Research Article
BibTex RIS Cite

Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR

Year 2019, Volume: 9 Issue: 2, 230 - 241, 30.12.2019
https://doi.org/10.37094/adyujsci.530868

Abstract

Olive tree (Olea europaea L.) that is a member of the Oleaceae family, is an evergreen, small tree that have been cultivated since prehistoric times in the eastern Mediterranean region. Olive is one of the vital components of Mediterranean diet. The pharmacological properties of olive oil, the olive fruit, and its leaves have been recognized as important components of a healthy diet as well as medicine because of their active role in diseases management. Mevalonate Kinase (MVK; EC 2.7.1.36; ATP:(R)- mevalonate 5-phosphotransferase) is the first enzyme in the plant isoprenoid biosynthesis in MVA (Mevalonate) pathway. In this study the MVK (Mevalonate Kinase) gene was cloned successfully from Olea europea, and named OeMVK (accession number: MH427085). The ORF (Open Reading Frame) of OeMVK was 1164 bp. OeMVK protein was consisted of 387 amino acids. Homologous sequence analysis showed that amino acid sequence of OeMVK had the highest identity of 97% with Catharanthus roseus mevalonate kinase 2a. Real-time PCR assay demonstrated that OeMVK was constitutively expressed in all tissues of olive with a similar transcription level with a slightly increase in unripe fruit. The molecular characterization of olive MVK gene and its expression level were speculated by taking the all olive tissues into account.

References

  • [1] Schulte, A.E., Llamas Durán, E.M., van der Heijden, R., Verpoorte, R., Mevalonate kinase activity in Catharanthus roseus plants and suspension cultured cells, Plant Science, 150(1), 59-69, 2000.
  • [2] Nyati, P., Rivera-Perez, C., Noriega, F.G., Negative feedbacks by isoprenoids on a mevalonate kinase expressed in the corpora allata of mosquitoes, Plos One, 10(11), 1-14, 2015
  • [3] Sapir-Mir, M., Mett, A., Belausov, E., Tal-Meshulam, S., Ahuva Frydman Gidoni, D., Eyal, Y., Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes, Plant Physiology, 148, 1219–1228, 2008.
  • [4] Gray, J.C., Control of isoprenoid biosynthesis in higher plants, Advances in Botanical Research, 14, 25–90, 1987.
  • [5] Bach, T.J., Some new aspects of isoprenoid biosynthesis in plants: A review, Lipids, 30(3), 191-202, 1995.
  • [6] Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., Bacher, A., The deoxyxylulose phosphate pathway of the terpenoid biosynthesis in plants and microorganisms, Chemical Biology, 5, 221–233, 1998.
  • [7] Rohmer, M., Seemann, M., Horbach, S., Bringer, S., Meyer, Sahm, H., Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis, Journal of the American Chemical Society, 118, 2564–2566, 1996.
  • [8] Lichtenthaler, H.K., Rohmer, M., Schwender, J., Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants, Physiologia Plantarum, 101: 643–652, 1997
  • [9] Stermer, B.A., Bianchini, G.M., Korth, K.L., Regulation of HMG-CoA reductase activity in plants: review, The Journal of Lipid Research, 35, 1133–1140, 1994.
  • [10] Lluch, M.A., Masferrer, A., Arró, M., Boronat, A., Ferrer, A., Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana, Plant Molecular Biology, 42(2), 365–376, 1997.
  • [11] Ma, Y., Yuan, L., Wu, B., Li, X., Chen, S., Lu, S., Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza, Journal of Experimental Botany, 63(7), 2809-2823, 2012.
  • [12] Guo, X., Luo, H.M., Chen, S.L., Cloning and analysis of mevalonate kinase (PnMVK1) gene in Panax notoginseng, Yao Xue Xue Bao, 47(8), 1092-1097, 2012.
  • [13] Alexandrov, N.N., Brover, V.V., Freidin, S., Troukhan, M.E, Tatarinova, T.V, Zhang, H., Swaller, T.J., Lu, Y.P., Bouck, J., Flavell, R.B., Feldmann, K.A., Insights into corn genes derived from large‐scale cDNA sequencing, Plant Molecular Biology, 69, 179–194, 2009.
  • [14] Meng, X., Zhang, W., Xu, F., Yan, J., Liu, X., Liao, Y., Chang, J., Cloning and sequence analysis of mevalonate kinase gene (CnMVK) from Chamaemelum nobile, International Journal of Current Research in Biosciences and Plant Biology, 3(11), 23-28, 2016.
  • [15] Sando, T., Takaoka, C., Mukai, Y., Yamashita, A., Hattori, M., Ogasawara, N., Fukusaki, E., Kobayashi, A., Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis, International Journal of Current Research in Biosciences and Plant Biology, 72(8), 2049-60, 2008.
  • [16] Alagna, F., Mariotti, R., Panara, F., Caporali, S., Urbani, S., Veneziani, G., Esposto, S., Taticchi, A., Rosati, A., Rao, R., Perrotta, G., Servili, M., Baldoni, L., Olive phenolic compounds: metabolic and transcriptional profiling during fruit development, BMC Plant Biology, 12, 162, 2012.
  • [17] Long, H.S., Tilney, P.M., Van Wyk, B.E., The ethnobotany and pharmacognosy of Olea europaea subsp. africana (Oleaceae), South African Journal of Botany, 76, 324–331, 2010.
  • [18] Hatzopoulos, P., Banilas, G., Giannoulia, K., Gazis, F., Nikoloudakis, N., Milioni, D., Haralampidis, K., Breeding, molecular markers and molecular biology of the olive tree, European Journal of Lipid Science and Technology, 104, 574-586, 2002.
  • [19] Mazzuca, S., Spadafora, A., Innocenti, A.M., Cell and tissue localization of beta-glucosidase during the ripening of olive fruit (Olea europaea L.) by in situ activity assay, Plant Science, 171, 726-733, 2006.
  • [20] Peragón, J., Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening, Journal of Agricultural and Food Chemistry, 61(27), 6671-6678, 2013.
  • [21] Alché, J.D., Castro, A.J., Jiménez-López, J.C., Morales, S., Zafra, A., Hamman-Khalifa, A.M., Rodríguez-García, M.I., Differential characteristics of olive pollen from different cultivars: Biological and clinical implications, Journal of Investigational Allergology and Clinical Immunology, 17(1), 69-75, 2007.
  • [22] Rozen, S., Skaletsky, H., Primer3 on the WWW for general users and for biologist programmers, In: Krawetz, S., Misener, S. (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, New Jersey, 2000.
  • [23] Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, 31, 3784-3788, 2003.
  • [24] Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER Suite: Protein structure and function prediction, Nature Methods, 12: 7-8, 2015.
  • [25] Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symposium Series, 41, 95-98, 1999. [26] Swofford, D., PAUP* 4.0b10: Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, 2003.
  • [27] Dundar, E., Sonmez, G.D., Unver, T., Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential, Molecular Genetics and Genomics, 290(1), 187-199, 2015.
  • [28] Hürkan, K., Sezer, F., Özbilen, A., Taşkın, K.M., Identification of reference genes for real-time quantitative polymerase chain reaction based gene expression studies on various Olive (Olea europaea L.) tissues, The Journal of Horticultural Science and Biotechnology, 93(3), 644-651, 2018.
  • [29] Ray, D.L., Johnson, J.C., Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR, BMC Research Notes, 7, 304, 2014.
  • [30] Minitab 17 Statistical Software [Computer software]. State College, PA: Minitab, Inc., 2010.
Year 2019, Volume: 9 Issue: 2, 230 - 241, 30.12.2019
https://doi.org/10.37094/adyujsci.530868

Abstract

Oleaceae familyası üyesi zeytin ağacı (Olea europaea L.), doğu Akdeniz bölgesinde tarih öncesi zamanlardan beri kültüre alınmış, her daim yeşil ve küçük bir ağaçtır. Zeytin, Akdeniz diyetinin en önemli unsurlarından biridir. Zeytinyağının, zeytin meyvesinin ve yapraklarının farmakolojik özellikleri, hastalık yönetimindeki aktif rolleri nedeniyle, sağlıklı bir diyetin yanı sıra ilacın da önemli bileşenleri olarak kabul edilmiştir. Mevalonat Kinaz, (MVK; EC 2.7.1.36; ATP:(R)- mevalonat 5-fosfotransferaz) bitkilerde MVA (Mevalonat) yolağında isoprenoid biyosentezinin birinci enzimidir. Bu çalışmada Olea europea’ ya ait MVK (Mevalonat Kinaz) geni başarı ile klonlanmış ve OeMVK (erişim numarası: MH427085) olarak isimlendirilmiştir. OeMVK genine ait ORF (Open Reading Frame) 1164 bp uzunluğundadır. OeMVK protein 387 amino asitten oluşmaktadır. Homolog dizi analizlerine göre OeMVK proteinini en yüksek benzerliği %97 ile Catharanthus roseus mevalonat kinaz 2a ile göstermiştir. Anlık gösterimli PZR ile OeMVK’ nın zeytine ait tüm dokularda üretildiği ve transkripsiyon seviyesinin ham meyvede bir miktar daha fazla olmakla birlikte tüm dokularda aşağı yukarı benzer bir seviyede olduğu gözlenmiştir. Zeytin MVK geninin moleküler karakterizasyonu ve transkripsiyon seviyesinin tespiti için tüm zeytin dokuları ile çalışılmıştır.

References

  • [1] Schulte, A.E., Llamas Durán, E.M., van der Heijden, R., Verpoorte, R., Mevalonate kinase activity in Catharanthus roseus plants and suspension cultured cells, Plant Science, 150(1), 59-69, 2000.
  • [2] Nyati, P., Rivera-Perez, C., Noriega, F.G., Negative feedbacks by isoprenoids on a mevalonate kinase expressed in the corpora allata of mosquitoes, Plos One, 10(11), 1-14, 2015
  • [3] Sapir-Mir, M., Mett, A., Belausov, E., Tal-Meshulam, S., Ahuva Frydman Gidoni, D., Eyal, Y., Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes, Plant Physiology, 148, 1219–1228, 2008.
  • [4] Gray, J.C., Control of isoprenoid biosynthesis in higher plants, Advances in Botanical Research, 14, 25–90, 1987.
  • [5] Bach, T.J., Some new aspects of isoprenoid biosynthesis in plants: A review, Lipids, 30(3), 191-202, 1995.
  • [6] Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., Bacher, A., The deoxyxylulose phosphate pathway of the terpenoid biosynthesis in plants and microorganisms, Chemical Biology, 5, 221–233, 1998.
  • [7] Rohmer, M., Seemann, M., Horbach, S., Bringer, S., Meyer, Sahm, H., Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis, Journal of the American Chemical Society, 118, 2564–2566, 1996.
  • [8] Lichtenthaler, H.K., Rohmer, M., Schwender, J., Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants, Physiologia Plantarum, 101: 643–652, 1997
  • [9] Stermer, B.A., Bianchini, G.M., Korth, K.L., Regulation of HMG-CoA reductase activity in plants: review, The Journal of Lipid Research, 35, 1133–1140, 1994.
  • [10] Lluch, M.A., Masferrer, A., Arró, M., Boronat, A., Ferrer, A., Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana, Plant Molecular Biology, 42(2), 365–376, 1997.
  • [11] Ma, Y., Yuan, L., Wu, B., Li, X., Chen, S., Lu, S., Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza, Journal of Experimental Botany, 63(7), 2809-2823, 2012.
  • [12] Guo, X., Luo, H.M., Chen, S.L., Cloning and analysis of mevalonate kinase (PnMVK1) gene in Panax notoginseng, Yao Xue Xue Bao, 47(8), 1092-1097, 2012.
  • [13] Alexandrov, N.N., Brover, V.V., Freidin, S., Troukhan, M.E, Tatarinova, T.V, Zhang, H., Swaller, T.J., Lu, Y.P., Bouck, J., Flavell, R.B., Feldmann, K.A., Insights into corn genes derived from large‐scale cDNA sequencing, Plant Molecular Biology, 69, 179–194, 2009.
  • [14] Meng, X., Zhang, W., Xu, F., Yan, J., Liu, X., Liao, Y., Chang, J., Cloning and sequence analysis of mevalonate kinase gene (CnMVK) from Chamaemelum nobile, International Journal of Current Research in Biosciences and Plant Biology, 3(11), 23-28, 2016.
  • [15] Sando, T., Takaoka, C., Mukai, Y., Yamashita, A., Hattori, M., Ogasawara, N., Fukusaki, E., Kobayashi, A., Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis, International Journal of Current Research in Biosciences and Plant Biology, 72(8), 2049-60, 2008.
  • [16] Alagna, F., Mariotti, R., Panara, F., Caporali, S., Urbani, S., Veneziani, G., Esposto, S., Taticchi, A., Rosati, A., Rao, R., Perrotta, G., Servili, M., Baldoni, L., Olive phenolic compounds: metabolic and transcriptional profiling during fruit development, BMC Plant Biology, 12, 162, 2012.
  • [17] Long, H.S., Tilney, P.M., Van Wyk, B.E., The ethnobotany and pharmacognosy of Olea europaea subsp. africana (Oleaceae), South African Journal of Botany, 76, 324–331, 2010.
  • [18] Hatzopoulos, P., Banilas, G., Giannoulia, K., Gazis, F., Nikoloudakis, N., Milioni, D., Haralampidis, K., Breeding, molecular markers and molecular biology of the olive tree, European Journal of Lipid Science and Technology, 104, 574-586, 2002.
  • [19] Mazzuca, S., Spadafora, A., Innocenti, A.M., Cell and tissue localization of beta-glucosidase during the ripening of olive fruit (Olea europaea L.) by in situ activity assay, Plant Science, 171, 726-733, 2006.
  • [20] Peragón, J., Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening, Journal of Agricultural and Food Chemistry, 61(27), 6671-6678, 2013.
  • [21] Alché, J.D., Castro, A.J., Jiménez-López, J.C., Morales, S., Zafra, A., Hamman-Khalifa, A.M., Rodríguez-García, M.I., Differential characteristics of olive pollen from different cultivars: Biological and clinical implications, Journal of Investigational Allergology and Clinical Immunology, 17(1), 69-75, 2007.
  • [22] Rozen, S., Skaletsky, H., Primer3 on the WWW for general users and for biologist programmers, In: Krawetz, S., Misener, S. (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, New Jersey, 2000.
  • [23] Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, 31, 3784-3788, 2003.
  • [24] Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER Suite: Protein structure and function prediction, Nature Methods, 12: 7-8, 2015.
  • [25] Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symposium Series, 41, 95-98, 1999. [26] Swofford, D., PAUP* 4.0b10: Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, 2003.
  • [27] Dundar, E., Sonmez, G.D., Unver, T., Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential, Molecular Genetics and Genomics, 290(1), 187-199, 2015.
  • [28] Hürkan, K., Sezer, F., Özbilen, A., Taşkın, K.M., Identification of reference genes for real-time quantitative polymerase chain reaction based gene expression studies on various Olive (Olea europaea L.) tissues, The Journal of Horticultural Science and Biotechnology, 93(3), 644-651, 2018.
  • [29] Ray, D.L., Johnson, J.C., Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR, BMC Research Notes, 7, 304, 2014.
  • [30] Minitab 17 Statistical Software [Computer software]. State College, PA: Minitab, Inc., 2010.
There are 29 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biology
Authors

Görkem Deniz Sönmez 0000-0002-3613-0195

Publication Date December 30, 2019
Submission Date February 22, 2019
Acceptance Date December 18, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Deniz Sönmez, G. (2019). Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR. Adıyaman University Journal of Science, 9(2), 230-241. https://doi.org/10.37094/adyujsci.530868
AMA Deniz Sönmez G. Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR. ADYU J SCI. December 2019;9(2):230-241. doi:10.37094/adyujsci.530868
Chicago Deniz Sönmez, Görkem. “Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR”. Adıyaman University Journal of Science 9, no. 2 (December 2019): 230-41. https://doi.org/10.37094/adyujsci.530868.
EndNote Deniz Sönmez G (December 1, 2019) Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR. Adıyaman University Journal of Science 9 2 230–241.
IEEE G. Deniz Sönmez, “Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR”, ADYU J SCI, vol. 9, no. 2, pp. 230–241, 2019, doi: 10.37094/adyujsci.530868.
ISNAD Deniz Sönmez, Görkem. “Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR”. Adıyaman University Journal of Science 9/2 (December 2019), 230-241. https://doi.org/10.37094/adyujsci.530868.
JAMA Deniz Sönmez G. Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR. ADYU J SCI. 2019;9:230–241.
MLA Deniz Sönmez, Görkem. “Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR”. Adıyaman University Journal of Science, vol. 9, no. 2, 2019, pp. 230-41, doi:10.37094/adyujsci.530868.
Vancouver Deniz Sönmez G. Analysis of OeMVK Gene Expression in Different Olive Tissues Using Real Time PCR. ADYU J SCI. 2019;9(2):230-41.

...