Research Article
BibTex RIS Cite

Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study

Year 2019, Volume: 9 Issue: 2, 290 - 302, 30.12.2019
https://doi.org/10.37094/adyujsci.546498

Abstract

      This article is an investigation related to the complexation energies, binding abilities, frontier molecular orbital’s energy gaps and dipole moments on dimeric forms of 1-adamantanol, 1-adamantanemethylamine and 1-adamantanecarboxylic acid as the adamantane derivatives. All the optimizations, counterpoise corrections and complexation energy computations have been achieved by density functional theory with B3LYP and WB97XD functionals. In all counterpoise calculations have been used the empirical dispersion method with B3LYP and WB97XD for non-covalent interactions. The more favorable complexation energies have been obtained by B3LYP with the addition of dispersion correction. In addition, the images mapped with total density and electrostatic potential have been obtained in this study.

References

  • [1] Shundalau, M.B., Al-Abdullah, E.S., Shabunya-Klyachkovskaya, E.V., Hlinisty, A.V., Al-Deeb, O.A., El-Emam, A.A., Gaponenko, S.V., Raman, infrared and DFT studies of N'-(adamantan-2-ylidene) benzohydrazide, a potential antibacterial agent, Journal of Molecular Structure, 1115, 258-266, 2016.
  • [2] Lamoureux G., Artavia G., Use of the adamantane structure in medicinal chemistry, Current Medicinal Chemistry, 17, 2967-2978, 2010.
  • [3] Liu, J., Obando, D., Liao, V., Lifa, T., Codd, R., The many faces of the adamantly group in drug design, European Journal of Medicinal Chemistry, 46, 1949-1963, 2011.
  • [4] Al-Wahaibi, L.H., Hassan, H.M., Abo-Kamar, A.M., Ghabbour, H.A. and El-Emam, A.A., Adamantane-ısothiourea hybrid derivatives:synthesis, characterization, in vitro antimicrobial, and in vivo hypoglycemic activities, Molecules, 22, 710, 2017.
  • [5] Davies, W.L., Grunnert, R.R., Haff, R.F., McGahen, J.W., Neumeyer, E.M., Paulshock, M., Watts, J.C., Wood, T.R., Hermann, E.C., Hoffmann, C.E., Antiviral activity of 1-adamantamine (amantadine), Science, 144, 862–863, 1964.
  • [6] Togo, Y., Hornick, R.B., Dawkins, A.T., Studies on induced influenza in man: I. double blind studies designed to assess prophylactic efficacy of amantadine hydrochloride against A2/Rockville/1/65 strain, Journal of the American Medical Association, 203, 1089–1094, 1968.
  • [7] Wendel, H.A., Snyder, M.T., Pell, S., Trial of amantadine in epidemic influenza, Journal of Clinical Pharmacy and Therapeutics, 7, 38–43, 1966.
  • [8] Schwab, R.S., England, A.C., Poskanzer, D.C., Young, R.R., Amantadine in the treatment of Parkinson’s disease, Journal of the American Medical Association, 208, 1168–1170, 1969.
  • [9] Sun, S.Y., Yue, P., Chen, X., Hong, W.K., Lotan, R., The synthetic retinoid CD437 selectively induces apoptosis in human lung cancer cells while sparing normal human lung epithelial cells, Cancer Research, 62, 2430-2436, 2002.
  • [10] Nakamura, Y., Fujimoto, T., Ogawa, Y., Namiki, H., Suzuki, S., Asano, M., Sugita, C., Mochizuki, A., Miyazaki, S., Tamaki, K., Nagai, Y., Inoue, S., Nagayama, T., Kato, M., Chiba, K., Takasuna, K., Nishi, T., Lead optimization of 5-amino-6-(2,2-dimethyl-5-oxo-4-phenylpiperazin-1-yl)-4-hydroxyhexanamides to reduce a cardiac safety issue: discovery of DS-8108b, an orally active renin inhibitor, Bioorganic & Medicinal Chemistry, 21, 3175-3196, 2013.
  • [11] Abou-Gharbia, M. A., Childers, W. E., Fletcher, H., McGaughey, G., Patel, U., Webb, M. B., Yardley, J., Andree, T., Boast, C., Kucharik, R.J., Marquis, K., Morris, H., Scerni, R., Moyer, J.A., Synthesis and SAR of adatanserin: novel adamantyl aryl- and heteroarylpiperazines with dual serotonin 5-HT(1A) and 5-HT(2) activity as potential anxiolytic and antidepressant agents, Journal of Medicinal Chemistry, 42, 5077-5094, 1999.
  • [12] Al-Abdullah, E.S., Asiri, H.H., Lahsasni, S., Habib, E.E., Ibrahim, T.M., El-Emam, A.A., Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols, Drug Design Development and Therapy, 8, 505-518, 2014.
  • [13] Al-Abdullah, E.S., Al-Tuwaijri, H.M., Hassan, H.M., Haiba, M.E., Habib E.E., El-Emam, A.A., Antimicrobial and hypoglycemic activities of novel N-Mannich bases derived from 5-(1-Adamantyl)-4-substituted-1,2,4-triazoline-3-thiones, International Journal of Molecular Sciences, 15, 22995-23010, 2014.
  • [14] Fort, R.C., Schleyer, P.R., Adamantane: consequences of the diamondoid structure, Chemical Reviews., 64, 277-300, 1964.
  • [15] Marsusi, F., Mirabbaszadeh, K., Mansoori, G.A., Opto-electronic properties of adamantane and hydrogen-terminated sila- and germa-adamantane: A comparative study, Physica E, 41, 1151-1156, 2009.
  • [16] Gapol, M.A.B., Kim, D.H., Novel adamantane-based hole transport materials for perovskite solar cells: a computational approach, A European Journal of Physical Chemistry Chemical Physics, 21, 3857-3867, 2019.
  • [17] Nasrallah, H., Hierso, J., Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts, Chemistry of Materials, 31, 619-642, 2019.
  • [18] Elavarasi, S.B., Mariam, D., Momeen, M.U., Hu, J., Guin, M., Effect of fluorination on bandgap, first and second order hyperpolarizabilities in lithium substituted adamantane: A time dependent density functional theory, Chemical Physics Letters, 715, 310-316, 2019.
  • [19] Myint, M.A., Blackmanx, A.G., Tan, E.W., (±)-Adamantane-1,2-diyl diacetate, Acta Crystallographica, E61, o3154–o3155, 2005.
  • [20] Pirali O., Goubet M., Boudon, V., D’Accolti, L., Fusco, C., Annese, C., Characterization of isolated 1-aza-adamantan-4-one (C9H13NO) from microwave, millimeter-wave and infrared spectroscopy supported by electronic structure calculations, Journal of Molecular Spectroscopy, 338, 6–14, 2017.
  • [21] Shundalau, M.B., Al-Abdullah, E.S., Shabunya-Klyachkovskaya, E.V., Hlinisty, A.V., Al-Deeb, O.A., El-Emam, A.A., Gaponenko, S.V., Raman, infrared and DFT studies of N'-(adamantan-2-ylidene) benzohydrazide, a potential antibacterial agent, Journal of Molecular Structure, 1115, 258-266, 2016.
  • [22] Saeed, A., Ashraf, Z., Erben, M.F., Simpson, J., Vibrational spectra and molecular structure of isomeric 1-(adamantan-1-ylcarbonyl)-3-(dichlorophenyl)thioureas, Journal of Molecular Structure, 1129, 283–291, 2017.
  • [23] Haress, N.G., Alomary, F.A.M., El-Emam, A.A., Mary, Y.S., Panicker C. Y., Al-Saadi, A.A., War, J.A., Alsenoy, C.V., Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 135, 973-983, 2015.
  • [24] Almutairi, M.S., Alanazi, A.M., Al-Abdullah, E.S., El-Emam, A.A., Pathak, S.K., Srivastava, R., Prasad, O., Sinha, L., FT-IR and FT-Raman spectroscopic signatures, vibrational assignments, NBO, NLO analysis and molecular docking study of 2-{[5-(adamantan-1-yl) - 4-methyl - 4H - 1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 140, 1–14, 2015.
  • [25] Sebastian, Sr.S.H.R., Attia, M.I., Almutairi, M.S., El-Emam, A.A., Panicker, C.Y., Alsenoy, C.V., FT-IR, FT-Raman, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione, a potential bioactive agent, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 132, 295-304, 2014.
  • [26] Al-Tamimi, A.S., El-Emam, A.A., Al-Deeb, O.A., Prasad, O., Pathak, S.K., Srivastava, R., Sinha, L., Structural and spectroscopic characterization of a novel potential anti-inflammatory agent 3-(adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)thione by first principle calculations, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 124, 108–123, 2014.
  • [27] Grimme, S., Semiemprical GGA-Type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, 27, 1787-1799, 2006. [28] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38, 3098-3100, 1988.
  • [29] Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review, B37, 785-789, 1988.
  • [30] Chai, J.D., Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, A European Journal of Physical Chemistry Chemical Physics, 10, 6615-6620, 2008.
  • [31] Dennington, R., Keith, T., Millam, J., GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission, KS, 2009.
  • [32] Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics, 19, 553-566, 1970.
  • [33] Frisch, M.J., Trucks, G.W., …, and Fox, D.J., Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2009.
  • [34] Sherrill, C.D., Counterpoise Correction and Basis Set Superposition Error, Georgia Institute of Technology, 1-6, 2010.
  • [35] Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, 27, 1787-1799, 2006.
  • [36] Raju, R.K., Bloom, J.W., An, Y., Wheeler, S.E., Substituent effects on non-covalent interactions with aromatic rings: insights from computational chemistry, A European Journal of Physical Chemistry Chemical Physics, 12, 3116-3130, 2011.
  • [37] Cortopassi, W.A., Kumara, K., Paton, R.S., Cation–π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity, Organic and Biomolecular Chemistry, 14, 10926-10938, 2016.
  • [38] Karakaya, M., Sert, Y., Sreenivasa, S., Suchetan, P.A., Çırak Ç., Monomer spectroscopic analysis and dimer interaction energies on N-(4-methoxybenzoyl)-2-methylbenzenesulfonamide by experimental and theoretical approaches, Spectrochimica Acta Part A, 169-177, 2015.
  • [39] Gervasio, F.L., Chelli, R., Procacci, P., Schettino, V., The nature of intermolecular interactions between aromatic amino acid residues, Proteins, 48, 117-125, 2002.
  • [40] Ullah, H., Shah, A.A., Bilal, S., Ayub, K., DFT study of polyaniline NH3, CO2, and CO gas Sensors: comparison with Recent Experimental Data, Journal of Physical Chemistry C, 117, 23701−23711, 2013.
  • [41] Almutairi, M.S., Xavier, S., Sathish, M., Ghabbour, H.A., Sebastian, S., Periandy, S., Al-Wabli, R.I., Attia, M.I., Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules,. Journal of Molecular Structure, 1133, 119−210, 2017.

Adamantan Türevlerinin Kompleksleşme Enerjileri ve Elektronik-Yapısal Özellikleri: Bir DFT Çalışması

Year 2019, Volume: 9 Issue: 2, 290 - 302, 30.12.2019
https://doi.org/10.37094/adyujsci.546498

Abstract

Bu makale, adamantan türevleri olarak 1-adamantanol, 1-adamantanmetilamin ve 1-adamantankarboksilik asit yapılarının dimerik formlarında kompleksleşme enerjileri, bağlanma yetenekleri, sınır moleküler orbital enerji boşlukları ve dipol momentleri ile ilgilidir. Tüm optimizasyonlar, counterpoise düzeltmeleri ve kompleksleşme enerji hesaplamaları, B3LYP ve WB97XD ile yoğunluk fonksiyonel teorisi yardımıyla elde edilmiştir. Tüm counterpoise hesaplamalarında kovalent olmayan etkileşimler için B3LYP ve WB97XD ile ampirik dispersiyon metodu kullanılmıştır. B3LYP yaklaşımında dispersiyon düzeltmesinin eklenmesiyle daha uygun kompleksleşme enerjileri elde edilmiştir. Ek olarak, bu çalışmada toplam yoğunluk ve elektrostatik potansiyel ile haritalanan görüntüler elde edilmiştir.

References

  • [1] Shundalau, M.B., Al-Abdullah, E.S., Shabunya-Klyachkovskaya, E.V., Hlinisty, A.V., Al-Deeb, O.A., El-Emam, A.A., Gaponenko, S.V., Raman, infrared and DFT studies of N'-(adamantan-2-ylidene) benzohydrazide, a potential antibacterial agent, Journal of Molecular Structure, 1115, 258-266, 2016.
  • [2] Lamoureux G., Artavia G., Use of the adamantane structure in medicinal chemistry, Current Medicinal Chemistry, 17, 2967-2978, 2010.
  • [3] Liu, J., Obando, D., Liao, V., Lifa, T., Codd, R., The many faces of the adamantly group in drug design, European Journal of Medicinal Chemistry, 46, 1949-1963, 2011.
  • [4] Al-Wahaibi, L.H., Hassan, H.M., Abo-Kamar, A.M., Ghabbour, H.A. and El-Emam, A.A., Adamantane-ısothiourea hybrid derivatives:synthesis, characterization, in vitro antimicrobial, and in vivo hypoglycemic activities, Molecules, 22, 710, 2017.
  • [5] Davies, W.L., Grunnert, R.R., Haff, R.F., McGahen, J.W., Neumeyer, E.M., Paulshock, M., Watts, J.C., Wood, T.R., Hermann, E.C., Hoffmann, C.E., Antiviral activity of 1-adamantamine (amantadine), Science, 144, 862–863, 1964.
  • [6] Togo, Y., Hornick, R.B., Dawkins, A.T., Studies on induced influenza in man: I. double blind studies designed to assess prophylactic efficacy of amantadine hydrochloride against A2/Rockville/1/65 strain, Journal of the American Medical Association, 203, 1089–1094, 1968.
  • [7] Wendel, H.A., Snyder, M.T., Pell, S., Trial of amantadine in epidemic influenza, Journal of Clinical Pharmacy and Therapeutics, 7, 38–43, 1966.
  • [8] Schwab, R.S., England, A.C., Poskanzer, D.C., Young, R.R., Amantadine in the treatment of Parkinson’s disease, Journal of the American Medical Association, 208, 1168–1170, 1969.
  • [9] Sun, S.Y., Yue, P., Chen, X., Hong, W.K., Lotan, R., The synthetic retinoid CD437 selectively induces apoptosis in human lung cancer cells while sparing normal human lung epithelial cells, Cancer Research, 62, 2430-2436, 2002.
  • [10] Nakamura, Y., Fujimoto, T., Ogawa, Y., Namiki, H., Suzuki, S., Asano, M., Sugita, C., Mochizuki, A., Miyazaki, S., Tamaki, K., Nagai, Y., Inoue, S., Nagayama, T., Kato, M., Chiba, K., Takasuna, K., Nishi, T., Lead optimization of 5-amino-6-(2,2-dimethyl-5-oxo-4-phenylpiperazin-1-yl)-4-hydroxyhexanamides to reduce a cardiac safety issue: discovery of DS-8108b, an orally active renin inhibitor, Bioorganic & Medicinal Chemistry, 21, 3175-3196, 2013.
  • [11] Abou-Gharbia, M. A., Childers, W. E., Fletcher, H., McGaughey, G., Patel, U., Webb, M. B., Yardley, J., Andree, T., Boast, C., Kucharik, R.J., Marquis, K., Morris, H., Scerni, R., Moyer, J.A., Synthesis and SAR of adatanserin: novel adamantyl aryl- and heteroarylpiperazines with dual serotonin 5-HT(1A) and 5-HT(2) activity as potential anxiolytic and antidepressant agents, Journal of Medicinal Chemistry, 42, 5077-5094, 1999.
  • [12] Al-Abdullah, E.S., Asiri, H.H., Lahsasni, S., Habib, E.E., Ibrahim, T.M., El-Emam, A.A., Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols, Drug Design Development and Therapy, 8, 505-518, 2014.
  • [13] Al-Abdullah, E.S., Al-Tuwaijri, H.M., Hassan, H.M., Haiba, M.E., Habib E.E., El-Emam, A.A., Antimicrobial and hypoglycemic activities of novel N-Mannich bases derived from 5-(1-Adamantyl)-4-substituted-1,2,4-triazoline-3-thiones, International Journal of Molecular Sciences, 15, 22995-23010, 2014.
  • [14] Fort, R.C., Schleyer, P.R., Adamantane: consequences of the diamondoid structure, Chemical Reviews., 64, 277-300, 1964.
  • [15] Marsusi, F., Mirabbaszadeh, K., Mansoori, G.A., Opto-electronic properties of adamantane and hydrogen-terminated sila- and germa-adamantane: A comparative study, Physica E, 41, 1151-1156, 2009.
  • [16] Gapol, M.A.B., Kim, D.H., Novel adamantane-based hole transport materials for perovskite solar cells: a computational approach, A European Journal of Physical Chemistry Chemical Physics, 21, 3857-3867, 2019.
  • [17] Nasrallah, H., Hierso, J., Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts, Chemistry of Materials, 31, 619-642, 2019.
  • [18] Elavarasi, S.B., Mariam, D., Momeen, M.U., Hu, J., Guin, M., Effect of fluorination on bandgap, first and second order hyperpolarizabilities in lithium substituted adamantane: A time dependent density functional theory, Chemical Physics Letters, 715, 310-316, 2019.
  • [19] Myint, M.A., Blackmanx, A.G., Tan, E.W., (±)-Adamantane-1,2-diyl diacetate, Acta Crystallographica, E61, o3154–o3155, 2005.
  • [20] Pirali O., Goubet M., Boudon, V., D’Accolti, L., Fusco, C., Annese, C., Characterization of isolated 1-aza-adamantan-4-one (C9H13NO) from microwave, millimeter-wave and infrared spectroscopy supported by electronic structure calculations, Journal of Molecular Spectroscopy, 338, 6–14, 2017.
  • [21] Shundalau, M.B., Al-Abdullah, E.S., Shabunya-Klyachkovskaya, E.V., Hlinisty, A.V., Al-Deeb, O.A., El-Emam, A.A., Gaponenko, S.V., Raman, infrared and DFT studies of N'-(adamantan-2-ylidene) benzohydrazide, a potential antibacterial agent, Journal of Molecular Structure, 1115, 258-266, 2016.
  • [22] Saeed, A., Ashraf, Z., Erben, M.F., Simpson, J., Vibrational spectra and molecular structure of isomeric 1-(adamantan-1-ylcarbonyl)-3-(dichlorophenyl)thioureas, Journal of Molecular Structure, 1129, 283–291, 2017.
  • [23] Haress, N.G., Alomary, F.A.M., El-Emam, A.A., Mary, Y.S., Panicker C. Y., Al-Saadi, A.A., War, J.A., Alsenoy, C.V., Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 135, 973-983, 2015.
  • [24] Almutairi, M.S., Alanazi, A.M., Al-Abdullah, E.S., El-Emam, A.A., Pathak, S.K., Srivastava, R., Prasad, O., Sinha, L., FT-IR and FT-Raman spectroscopic signatures, vibrational assignments, NBO, NLO analysis and molecular docking study of 2-{[5-(adamantan-1-yl) - 4-methyl - 4H - 1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 140, 1–14, 2015.
  • [25] Sebastian, Sr.S.H.R., Attia, M.I., Almutairi, M.S., El-Emam, A.A., Panicker, C.Y., Alsenoy, C.V., FT-IR, FT-Raman, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione, a potential bioactive agent, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 132, 295-304, 2014.
  • [26] Al-Tamimi, A.S., El-Emam, A.A., Al-Deeb, O.A., Prasad, O., Pathak, S.K., Srivastava, R., Sinha, L., Structural and spectroscopic characterization of a novel potential anti-inflammatory agent 3-(adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)thione by first principle calculations, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 124, 108–123, 2014.
  • [27] Grimme, S., Semiemprical GGA-Type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, 27, 1787-1799, 2006. [28] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38, 3098-3100, 1988.
  • [29] Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review, B37, 785-789, 1988.
  • [30] Chai, J.D., Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, A European Journal of Physical Chemistry Chemical Physics, 10, 6615-6620, 2008.
  • [31] Dennington, R., Keith, T., Millam, J., GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission, KS, 2009.
  • [32] Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics, 19, 553-566, 1970.
  • [33] Frisch, M.J., Trucks, G.W., …, and Fox, D.J., Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2009.
  • [34] Sherrill, C.D., Counterpoise Correction and Basis Set Superposition Error, Georgia Institute of Technology, 1-6, 2010.
  • [35] Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, 27, 1787-1799, 2006.
  • [36] Raju, R.K., Bloom, J.W., An, Y., Wheeler, S.E., Substituent effects on non-covalent interactions with aromatic rings: insights from computational chemistry, A European Journal of Physical Chemistry Chemical Physics, 12, 3116-3130, 2011.
  • [37] Cortopassi, W.A., Kumara, K., Paton, R.S., Cation–π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity, Organic and Biomolecular Chemistry, 14, 10926-10938, 2016.
  • [38] Karakaya, M., Sert, Y., Sreenivasa, S., Suchetan, P.A., Çırak Ç., Monomer spectroscopic analysis and dimer interaction energies on N-(4-methoxybenzoyl)-2-methylbenzenesulfonamide by experimental and theoretical approaches, Spectrochimica Acta Part A, 169-177, 2015.
  • [39] Gervasio, F.L., Chelli, R., Procacci, P., Schettino, V., The nature of intermolecular interactions between aromatic amino acid residues, Proteins, 48, 117-125, 2002.
  • [40] Ullah, H., Shah, A.A., Bilal, S., Ayub, K., DFT study of polyaniline NH3, CO2, and CO gas Sensors: comparison with Recent Experimental Data, Journal of Physical Chemistry C, 117, 23701−23711, 2013.
  • [41] Almutairi, M.S., Xavier, S., Sathish, M., Ghabbour, H.A., Sebastian, S., Periandy, S., Al-Wabli, R.I., Attia, M.I., Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules,. Journal of Molecular Structure, 1133, 119−210, 2017.
There are 40 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Chemistry
Authors

Mustafa Karakaya 0000-0001-6663-9008

Publication Date December 30, 2019
Submission Date March 29, 2019
Acceptance Date December 18, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Karakaya, M. (2019). Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study. Adıyaman University Journal of Science, 9(2), 290-302. https://doi.org/10.37094/adyujsci.546498
AMA Karakaya M. Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study. ADYU J SCI. December 2019;9(2):290-302. doi:10.37094/adyujsci.546498
Chicago Karakaya, Mustafa. “Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study”. Adıyaman University Journal of Science 9, no. 2 (December 2019): 290-302. https://doi.org/10.37094/adyujsci.546498.
EndNote Karakaya M (December 1, 2019) Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study. Adıyaman University Journal of Science 9 2 290–302.
IEEE M. Karakaya, “Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study”, ADYU J SCI, vol. 9, no. 2, pp. 290–302, 2019, doi: 10.37094/adyujsci.546498.
ISNAD Karakaya, Mustafa. “Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study”. Adıyaman University Journal of Science 9/2 (December 2019), 290-302. https://doi.org/10.37094/adyujsci.546498.
JAMA Karakaya M. Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study. ADYU J SCI. 2019;9:290–302.
MLA Karakaya, Mustafa. “Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study”. Adıyaman University Journal of Science, vol. 9, no. 2, 2019, pp. 290-02, doi:10.37094/adyujsci.546498.
Vancouver Karakaya M. Complexation Energies and Electronic-Structural Properties of Adamantane Derivatives: A DFT Study. ADYU J SCI. 2019;9(2):290-302.

...