Research Article
BibTex RIS Cite

Hücresel Dönüşümlerin Bir Kuralının Matris Temsili ve Kodlama Teorisinde Bir Uygulaması

Year 2019, Volume: 9 Issue: 2, 329 - 341, 30.12.2019
https://doi.org/10.37094/adyujsci.551180

Abstract

Bu çalışmada, matris cebiri yardımıyla üç boyutlu bir hücresel dönüşüm ailesinin periyodik sınır şartı altında davranışını inceledik. Polinom cebiri yardımıyla bu ailenin temsil matrisini elde ettik. Elde edilen blok matrislerin üçlü cisimler üzerinde bir kodlama teorisi uygulamasını verdik.

References

  • [1] Von Neumann, J., The theory of self-reproducing automata, Edited by A.W. Burks, Univ. of Illinois Press, Urbana, 1966.
  • [2] Wolfram, S., Statistical mechanics of cellular automata, Reviews of Modern Physics, 55 (3),601-644, 1983.
  • [3] Holden, A.V., Nonlinear science- the impact of biology, Journal of the Franklin Institute, 334(5-6), 971-1014, 1997.
  • [4] Kari, J., Reversibility of 2D cellular automata is undecidable, Physica D, 45, 386-395, 1990.
  • [5] Köroğlu M.E., Şiap, İ., Akın, H., Error correcting codes via reversible cellular automata over finite fields, The Arabian Journal for Science and Engineering, 39, 1881-1887, 2014.
  • [6] Adamatzky, A., Nonconstructible blocks in 1D cellular automata: minimal generators and natural systems, Applied Mathematics and Computation, 99, 77-91, 1999.
  • [7] Akın, H., On the directional entropy of Z^2-actions generated by additive cellular automata, Applied Mathematics and Computation, 170 (1), 339-346, 2005.
  • [8] Akın, H., Şiap, İ., On cellular automata over Galois rings, Information Processing Letters, 103 (1), 24-27, 2007.
  • [9] Alvarez, G., Hernández Encinas, L., Martin del Rey, A., A multisecret sharing scheme for color images based on cellular automata, Information Sciences, 178, 4382-4395, 2008.
  • [10] Durand, B., Inversion of 2D cellular automata: some complexity results, Theoretical Computer Science, 134, 387-401, 1994.
  • [11] Blackburn, S.R., Murphy, S., Peterson, K.G., Comments on theory and applications of cellular automata in cryptography, IEEE Transactions on Computers, 46, 637-638, 1997.
  • [12] Dihidar, K., Choudhury, P.P., Matrix algebraic formulae concerning some exceptional rules of two dimensional cellular automata, Information Sciences, 165, 91-101, 2004.
  • [13] Khan, A.R., Choudhury, P.P., Dihidar, K., Mitra, S., Sarkar, P., VLSI architecture of a cellular automata, Computers and Mathematics with Applications, 33, 79-94, 1997.
  • [14] Khan, A.R., Choudhury, P.P., Dihidar, Verma, R., Text compression using two dimensional cellular automata, Computers and Mathematics with Applications, 37, 115-127, 1999.
  • [15] Ying, Z., Zhong, Y., Pei-min, D., On behavior of two-dimensional cellular automata with an exceptional rule, Information Sciences, 179 (5), 613-622, 2009.
  • [16] Zhai, Y., Yi, Z., Deng, P., On behavior of two-dimensional cellular automata with an exceptional rule under periodic boundary condition, The Journal of China Universities of Posts and Telecommunications, 17 (1), 67-72, 2010.
  • [17] Hemmingsson, J.A., Totalistic three-dimensional cellular automaton with quasiperiodic behaviour, Physica A: Statistical Mechanics and its Applications, 183(3) ,255-261, 1992.
  • [18] Tsalides, P., Hicks, P.J., York, T.A., Three-dimensional cellular automata and VLSI applications, IEEE Proceedings, 136(6), 490 - 495, 1989.
  • [19] Mo, Y., Ren, B., Yang, W., The 3-dimensional cellular automata for HIV infection, Physica A: Statistical Mechanics and its Applications, 399, 31-39, 2014.
  • [20] Şiap, İ., Akın, H., Şah, F., Characterization of two dimensional cellular automata over ternary fields, Journal of The Franklin Institute, 348, 1258-1275, 2011.
  • [21] Chowdhury, D.R., Basu, S., Gupta, I.S., and Chaudhuri, P.P., Design of CAECC-Cellular Automata Based Error Correcting Code, IEEE Transactions on Computers, 43, 759-764, 1994.
  • [22] Şiap, İ., Akın, H., Köroğlu, M.E., The reversibility of (2r+1) cyclic rule cellular automata, TWMS Journal of Pure and Applied Mathematics, 4(2), 215-225, 2013.

The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory

Year 2019, Volume: 9 Issue: 2, 329 - 341, 30.12.2019
https://doi.org/10.37094/adyujsci.551180

Abstract

 In this paper we studied the behavior of a family of three dimensional cellular automata under periodic boundary condition by using matrix algebra. We obtained representation matrix of the this family with the help of polinomal algebra. We gave an application of obtained block matrices to coding theory over the ternary field.

 

References

  • [1] Von Neumann, J., The theory of self-reproducing automata, Edited by A.W. Burks, Univ. of Illinois Press, Urbana, 1966.
  • [2] Wolfram, S., Statistical mechanics of cellular automata, Reviews of Modern Physics, 55 (3),601-644, 1983.
  • [3] Holden, A.V., Nonlinear science- the impact of biology, Journal of the Franklin Institute, 334(5-6), 971-1014, 1997.
  • [4] Kari, J., Reversibility of 2D cellular automata is undecidable, Physica D, 45, 386-395, 1990.
  • [5] Köroğlu M.E., Şiap, İ., Akın, H., Error correcting codes via reversible cellular automata over finite fields, The Arabian Journal for Science and Engineering, 39, 1881-1887, 2014.
  • [6] Adamatzky, A., Nonconstructible blocks in 1D cellular automata: minimal generators and natural systems, Applied Mathematics and Computation, 99, 77-91, 1999.
  • [7] Akın, H., On the directional entropy of Z^2-actions generated by additive cellular automata, Applied Mathematics and Computation, 170 (1), 339-346, 2005.
  • [8] Akın, H., Şiap, İ., On cellular automata over Galois rings, Information Processing Letters, 103 (1), 24-27, 2007.
  • [9] Alvarez, G., Hernández Encinas, L., Martin del Rey, A., A multisecret sharing scheme for color images based on cellular automata, Information Sciences, 178, 4382-4395, 2008.
  • [10] Durand, B., Inversion of 2D cellular automata: some complexity results, Theoretical Computer Science, 134, 387-401, 1994.
  • [11] Blackburn, S.R., Murphy, S., Peterson, K.G., Comments on theory and applications of cellular automata in cryptography, IEEE Transactions on Computers, 46, 637-638, 1997.
  • [12] Dihidar, K., Choudhury, P.P., Matrix algebraic formulae concerning some exceptional rules of two dimensional cellular automata, Information Sciences, 165, 91-101, 2004.
  • [13] Khan, A.R., Choudhury, P.P., Dihidar, K., Mitra, S., Sarkar, P., VLSI architecture of a cellular automata, Computers and Mathematics with Applications, 33, 79-94, 1997.
  • [14] Khan, A.R., Choudhury, P.P., Dihidar, Verma, R., Text compression using two dimensional cellular automata, Computers and Mathematics with Applications, 37, 115-127, 1999.
  • [15] Ying, Z., Zhong, Y., Pei-min, D., On behavior of two-dimensional cellular automata with an exceptional rule, Information Sciences, 179 (5), 613-622, 2009.
  • [16] Zhai, Y., Yi, Z., Deng, P., On behavior of two-dimensional cellular automata with an exceptional rule under periodic boundary condition, The Journal of China Universities of Posts and Telecommunications, 17 (1), 67-72, 2010.
  • [17] Hemmingsson, J.A., Totalistic three-dimensional cellular automaton with quasiperiodic behaviour, Physica A: Statistical Mechanics and its Applications, 183(3) ,255-261, 1992.
  • [18] Tsalides, P., Hicks, P.J., York, T.A., Three-dimensional cellular automata and VLSI applications, IEEE Proceedings, 136(6), 490 - 495, 1989.
  • [19] Mo, Y., Ren, B., Yang, W., The 3-dimensional cellular automata for HIV infection, Physica A: Statistical Mechanics and its Applications, 399, 31-39, 2014.
  • [20] Şiap, İ., Akın, H., Şah, F., Characterization of two dimensional cellular automata over ternary fields, Journal of The Franklin Institute, 348, 1258-1275, 2011.
  • [21] Chowdhury, D.R., Basu, S., Gupta, I.S., and Chaudhuri, P.P., Design of CAECC-Cellular Automata Based Error Correcting Code, IEEE Transactions on Computers, 43, 759-764, 1994.
  • [22] Şiap, İ., Akın, H., Köroğlu, M.E., The reversibility of (2r+1) cyclic rule cellular automata, TWMS Journal of Pure and Applied Mathematics, 4(2), 215-225, 2013.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ferhat Şah 0000-0003-4847-9180

Publication Date December 30, 2019
Submission Date April 9, 2019
Acceptance Date December 19, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Şah, F. (2019). The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory. Adıyaman University Journal of Science, 9(2), 329-341. https://doi.org/10.37094/adyujsci.551180
AMA Şah F. The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory. ADYU J SCI. December 2019;9(2):329-341. doi:10.37094/adyujsci.551180
Chicago Şah, Ferhat. “The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory”. Adıyaman University Journal of Science 9, no. 2 (December 2019): 329-41. https://doi.org/10.37094/adyujsci.551180.
EndNote Şah F (December 1, 2019) The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory. Adıyaman University Journal of Science 9 2 329–341.
IEEE F. Şah, “The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory”, ADYU J SCI, vol. 9, no. 2, pp. 329–341, 2019, doi: 10.37094/adyujsci.551180.
ISNAD Şah, Ferhat. “The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory”. Adıyaman University Journal of Science 9/2 (December 2019), 329-341. https://doi.org/10.37094/adyujsci.551180.
JAMA Şah F. The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory. ADYU J SCI. 2019;9:329–341.
MLA Şah, Ferhat. “The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory”. Adıyaman University Journal of Science, vol. 9, no. 2, 2019, pp. 329-41, doi:10.37094/adyujsci.551180.
Vancouver Şah F. The Matrix Representation of A Rule of Cellular Automata and An Application to Coding Theory. ADYU J SCI. 2019;9(2):329-41.

...