Research Article
BibTex RIS Cite

Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas

Year 2020, Volume: 10 Issue: 1, 326 - 338, 25.06.2020
https://doi.org/10.37094/adyujsci.701884

Abstract

    In this study, firstly, N2 atmospheric pressure plasma jet (APPJ) system was presented. Nitrogen gas discharges are produced as jet using an AC power supply which can be adjusted between 6-18 kV and the frequency value of 13-20 kHz at atmospheric pressure. The change of length of produced atmospheric pressure nitrogen plasma jet, according to gas flow rate has been investigated and the produced jet length was approximately 2 cm for 5 L/min when the applied voltage was 18 kV and the frequency was 15 kHz. Nitrogen plasma jet produced at atmospheric pressure was examined with optical emission spectroscopy (OES) and the correlation between gas flow rate and emission spectra were investigated. Furthermore, electron temperature and electron density of atmospheric pressure nitrogen gas plasma jet were estimated under different flow rates of N2 gas.

Supporting Institution

Eskişehir Osmangazi University Scientific Research Committee

Project Number

2017-1564

Thanks

This study is supported by Eskisehir Osmangazi University Scientific Research Committee with project number 201819012.

References

  • [1] Bogaerts, A., Neyts, E., Gijbels, R., Van der Mullen, J., Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658, 2002.
  • [2] Petitpas, G., Rollier, J.-D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., Fulcheri, L., A comparative study of non-thermal plasma assisted reforming technologies, International Journal of Hydrogen Energy, 32(14), 2848-2867, 2007.
  • [3] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., Atmospheric pressure plasmas: a review, Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30, 2006.
  • [4] Treumann, R.A., Kłos, Z., Parrot, M., Physics of electric discharges in atmospheric gases: an informal introduction, Planetary Atmospheric Electricity, Springer New York, 133-148, 2008
  • [5] Ahmed, K., Allam, T., El-sayed, H., Soliman, H., Ward, S., Saied, E., Design, construction and characterization of ac atmospheric pressure air non-thermal plasma jet, Journal of Fusion Energy, 33(6), 627-633, 2014.
  • [6] Allam, T., Ward, S., El-Sayed, H., Saied, E., Soliman, H., Ahmed, K., Electrical parameters investigation and zero flow rate effect of nitrogen atmospheric nonthermal plasma jet, Energy and Power Engineering, 6(12), 437, 2014.
  • [7] Ricard, A., Oh, S.G., Jang, J., Kim, Y.K., Quantitative evaluation of the densities of active species of N2 in the afterglow of Ar-embedded N2 RF plasma, Current Applied Physics, 15(11), 1453-1462, 2015.
  • [8] Ricard, A., Oh, S.-g., Guerra, V., Line-ratio determination of atomic oxygen and N2(A3Σu+) metastable absolute densities in an RF nitrogen late afterglow, Plasma Sources Science Technology, 22(3), 2013.
  • [9] Guerra, V., Sa, P., Loureiro, J., Role played by the N2(A3Σu+) metastable in stationary N2 and N2-O2 discharges, Journal of Physics D: Applied Physics, 34(12), 1745, 2001.
  • [10] Loureiro, J., Sá, P., Guerra, V., Role of long-lived N2(X1Σg+, v) molecules and N2(A3Σu+) and N2(a'1Σu-) states in the light emissions of an N2 afterglow, Journal of Physics D: Applied Physics, 34(12), 1769, 2001.
  • [11] Hrycak, B., Jasiński, M., Mizeraczyk, J., Spectroscopic characterization of nitrogen plasma generated by waveguide-supplied coaxial-line-based nozzleless microwave source, IOP Publishing, 406(1), 012037, 2012.
  • [12] Rankovic, D., Kuzmanovic, M., Pavlovic, M.S., Stoiljkovic, M., Savovic, J., Properties of argon–nitrogen atmospheric pressure DC arc plasma, Plasma Chemistry and Plasma Processing, 35(6), 1071-1095, 2015.
  • [13] Karam, L., Casetta, M., Chihib, N.E., Bentiss, F., Maschke, U., Jama, C., Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films, Journal of the Taiwan Institute of Chemical Engineers, 64, 299-305, 2016.
  • [14] Mahmoud, K., Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157, 153-157, 2016.
  • [15] Gholampour, M., Abdollah-Zadeh, A., Shekari, L., Poursalehi, R., From nanoparticles to nanowires of GaN with different hydrogen gas flow rates by PDC-PECVD, Procedia Materials Science, 11, 304-308, 2015.
  • [16] Choi, J.S., Park, J.G., Interface characterization of nitrogen plasma‐treated gate oxide film formed by RTP technology, Surface and Interface Analysis, 46(S1), 303-306, 2014.
  • [17] Shi, D., Xu, W., Miao, C., Ma, C., Ren, C., Lu, W., Zhang, Q., A high-activity nitrogen plasma flow source for deposition of silicon nitride films, Surface and Coatings Technology, 294, 194-200, 2016.
  • [18] Pan, G.-T., Chong, S., Yang, T.C.-K., Yang, Y.-L., Arjun, N., Surface modification of amorphous SiO2 nanoparticles by oxygen-plasma and nitrogen-plasma treatments, Chemical Engineering Communications, 203(12), 1666-1670, 2016.
  • [19] Wang, J.C., Ye, Y.R., Lin, Y.H., Light‐addressable potentiometric sensor with nitrogen‐incorporated ceramic Sm2O3 membrane for chloride ions detection, Journal of the American Ceramic Society, 98(2), 443-447, 2015.
  • [20] Castro-Colin, M., Durrer, W., López, J.A., Ramirez-Homs, E., Surface modification by nitrogen plasma immersion ion implantation on austenitic AISI 304 stainless steel, Journal of Iron and Steel Research International, 23(4), 380-384, 2016.
  • [21] Praveen, T., Shiju, K., Predeep, P., Influence of plasma treatment on Indium Tin Oxide electrodes, Microelectronic Engineering, 131, 8-12, 2015.
  • [22] Bertóti, I., Mohai, M., László, K., Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy, Carbon, 84, 185-196, 2015.
  • [23] Pal, D., Neogi, S., De, S., Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma, Thin Solid Films, 597, 171-182, 2015.
  • [24] Khatir, S., Hirose, A., Xiao, C., Characterization of physical and biomedical properties of nitrogenated diamond-like carbon films coated on polytetrafluoroethylene substrates, Diamond and Related Materials, 58, 205-213, 2015.
  • [25] Alers, G., Fleming, R., Wong, Y., Dennis, B., Pinczuk, A., Redinbo, G., Urdahl, R., Ong, E., Hasan, Z., Nitrogen plasma annealing for low temperature Ta2O5 films, Applied physics letters, 72(11), 1308-1310, 1998.
  • [26] https://www.nist.gov/pml/atomic-spectra-database, 06.03.2020.
  • [27] Shah, M., Ahmad, R., Iikhlaq, U., Saleem, S., Characterization of pulsed DC nitrogen plasma using optical emission spectroscopy and Langmuir probe, Journal of Natural Sciences and Mathematics, 53, 1-12, 2013.
  • [28] Marr, G.V., Plasma spectroscopy, Elsevier Publishing Company, 5, 1968.
Year 2020, Volume: 10 Issue: 1, 326 - 338, 25.06.2020
https://doi.org/10.37094/adyujsci.701884

Abstract

Project Number

2017-1564

References

  • [1] Bogaerts, A., Neyts, E., Gijbels, R., Van der Mullen, J., Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658, 2002.
  • [2] Petitpas, G., Rollier, J.-D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., Fulcheri, L., A comparative study of non-thermal plasma assisted reforming technologies, International Journal of Hydrogen Energy, 32(14), 2848-2867, 2007.
  • [3] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., Atmospheric pressure plasmas: a review, Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30, 2006.
  • [4] Treumann, R.A., Kłos, Z., Parrot, M., Physics of electric discharges in atmospheric gases: an informal introduction, Planetary Atmospheric Electricity, Springer New York, 133-148, 2008
  • [5] Ahmed, K., Allam, T., El-sayed, H., Soliman, H., Ward, S., Saied, E., Design, construction and characterization of ac atmospheric pressure air non-thermal plasma jet, Journal of Fusion Energy, 33(6), 627-633, 2014.
  • [6] Allam, T., Ward, S., El-Sayed, H., Saied, E., Soliman, H., Ahmed, K., Electrical parameters investigation and zero flow rate effect of nitrogen atmospheric nonthermal plasma jet, Energy and Power Engineering, 6(12), 437, 2014.
  • [7] Ricard, A., Oh, S.G., Jang, J., Kim, Y.K., Quantitative evaluation of the densities of active species of N2 in the afterglow of Ar-embedded N2 RF plasma, Current Applied Physics, 15(11), 1453-1462, 2015.
  • [8] Ricard, A., Oh, S.-g., Guerra, V., Line-ratio determination of atomic oxygen and N2(A3Σu+) metastable absolute densities in an RF nitrogen late afterglow, Plasma Sources Science Technology, 22(3), 2013.
  • [9] Guerra, V., Sa, P., Loureiro, J., Role played by the N2(A3Σu+) metastable in stationary N2 and N2-O2 discharges, Journal of Physics D: Applied Physics, 34(12), 1745, 2001.
  • [10] Loureiro, J., Sá, P., Guerra, V., Role of long-lived N2(X1Σg+, v) molecules and N2(A3Σu+) and N2(a'1Σu-) states in the light emissions of an N2 afterglow, Journal of Physics D: Applied Physics, 34(12), 1769, 2001.
  • [11] Hrycak, B., Jasiński, M., Mizeraczyk, J., Spectroscopic characterization of nitrogen plasma generated by waveguide-supplied coaxial-line-based nozzleless microwave source, IOP Publishing, 406(1), 012037, 2012.
  • [12] Rankovic, D., Kuzmanovic, M., Pavlovic, M.S., Stoiljkovic, M., Savovic, J., Properties of argon–nitrogen atmospheric pressure DC arc plasma, Plasma Chemistry and Plasma Processing, 35(6), 1071-1095, 2015.
  • [13] Karam, L., Casetta, M., Chihib, N.E., Bentiss, F., Maschke, U., Jama, C., Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films, Journal of the Taiwan Institute of Chemical Engineers, 64, 299-305, 2016.
  • [14] Mahmoud, K., Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157, 153-157, 2016.
  • [15] Gholampour, M., Abdollah-Zadeh, A., Shekari, L., Poursalehi, R., From nanoparticles to nanowires of GaN with different hydrogen gas flow rates by PDC-PECVD, Procedia Materials Science, 11, 304-308, 2015.
  • [16] Choi, J.S., Park, J.G., Interface characterization of nitrogen plasma‐treated gate oxide film formed by RTP technology, Surface and Interface Analysis, 46(S1), 303-306, 2014.
  • [17] Shi, D., Xu, W., Miao, C., Ma, C., Ren, C., Lu, W., Zhang, Q., A high-activity nitrogen plasma flow source for deposition of silicon nitride films, Surface and Coatings Technology, 294, 194-200, 2016.
  • [18] Pan, G.-T., Chong, S., Yang, T.C.-K., Yang, Y.-L., Arjun, N., Surface modification of amorphous SiO2 nanoparticles by oxygen-plasma and nitrogen-plasma treatments, Chemical Engineering Communications, 203(12), 1666-1670, 2016.
  • [19] Wang, J.C., Ye, Y.R., Lin, Y.H., Light‐addressable potentiometric sensor with nitrogen‐incorporated ceramic Sm2O3 membrane for chloride ions detection, Journal of the American Ceramic Society, 98(2), 443-447, 2015.
  • [20] Castro-Colin, M., Durrer, W., López, J.A., Ramirez-Homs, E., Surface modification by nitrogen plasma immersion ion implantation on austenitic AISI 304 stainless steel, Journal of Iron and Steel Research International, 23(4), 380-384, 2016.
  • [21] Praveen, T., Shiju, K., Predeep, P., Influence of plasma treatment on Indium Tin Oxide electrodes, Microelectronic Engineering, 131, 8-12, 2015.
  • [22] Bertóti, I., Mohai, M., László, K., Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy, Carbon, 84, 185-196, 2015.
  • [23] Pal, D., Neogi, S., De, S., Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma, Thin Solid Films, 597, 171-182, 2015.
  • [24] Khatir, S., Hirose, A., Xiao, C., Characterization of physical and biomedical properties of nitrogenated diamond-like carbon films coated on polytetrafluoroethylene substrates, Diamond and Related Materials, 58, 205-213, 2015.
  • [25] Alers, G., Fleming, R., Wong, Y., Dennis, B., Pinczuk, A., Redinbo, G., Urdahl, R., Ong, E., Hasan, Z., Nitrogen plasma annealing for low temperature Ta2O5 films, Applied physics letters, 72(11), 1308-1310, 1998.
  • [26] https://www.nist.gov/pml/atomic-spectra-database, 06.03.2020.
  • [27] Shah, M., Ahmad, R., Iikhlaq, U., Saleem, S., Characterization of pulsed DC nitrogen plasma using optical emission spectroscopy and Langmuir probe, Journal of Natural Sciences and Mathematics, 53, 1-12, 2013.
  • [28] Marr, G.V., Plasma spectroscopy, Elsevier Publishing Company, 5, 1968.
There are 28 citations in total.

Details

Primary Language English
Subjects Plasma Physics; Fusion Plasmas; Electrical Discharges
Journal Section Physics
Authors

Erkan Ilik 0000-0003-2986-0015

Çağrı Durmuş 0000-0003-0174-0580

Tamer Akan This is me 0000-0003-0907-2724

Project Number 2017-1564
Publication Date June 25, 2020
Submission Date March 10, 2020
Acceptance Date May 7, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Ilik, E., Durmuş, Ç., & Akan, T. (2020). Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas. Adıyaman University Journal of Science, 10(1), 326-338. https://doi.org/10.37094/adyujsci.701884
AMA Ilik E, Durmuş Ç, Akan T. Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas. ADYU J SCI. June 2020;10(1):326-338. doi:10.37094/adyujsci.701884
Chicago Ilik, Erkan, Çağrı Durmuş, and Tamer Akan. “Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas”. Adıyaman University Journal of Science 10, no. 1 (June 2020): 326-38. https://doi.org/10.37094/adyujsci.701884.
EndNote Ilik E, Durmuş Ç, Akan T (June 1, 2020) Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas. Adıyaman University Journal of Science 10 1 326–338.
IEEE E. Ilik, Ç. Durmuş, and T. Akan, “Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas”, ADYU J SCI, vol. 10, no. 1, pp. 326–338, 2020, doi: 10.37094/adyujsci.701884.
ISNAD Ilik, Erkan et al. “Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas”. Adıyaman University Journal of Science 10/1 (June 2020), 326-338. https://doi.org/10.37094/adyujsci.701884.
JAMA Ilik E, Durmuş Ç, Akan T. Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas. ADYU J SCI. 2020;10:326–338.
MLA Ilik, Erkan et al. “Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas”. Adıyaman University Journal of Science, vol. 10, no. 1, 2020, pp. 326-38, doi:10.37094/adyujsci.701884.
Vancouver Ilik E, Durmuş Ç, Akan T. Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N2 Gas. ADYU J SCI. 2020;10(1):326-38.

...