Research Article
BibTex RIS Cite

Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles

Year 2020, Volume: 10 Issue: 1, 353 - 363, 25.06.2020
https://doi.org/10.37094/adyujsci.709426

Abstract

    We have studied the effect of preparation methods, under argon gas and in the air environment, on the cobalt oxide formation of CoPt nanoparticles by the polyol process. The formation of cobalt oxide for both samples was investigated by the x-ray diffraction (XRD) method and cobalt oxide peaks are observed in the air prepared sample. Rietveld refinement analyses revealed that all samples exhibit a chemically distorted cubic crystal structure. The average particle size was determined <8 nm by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) was revealed the chemical compositions with possible oxygen formation in the structure. The blocking temperature is reduced to 28 K in the air prepared sample due to cobalt oxide formation. The hysteresis gap disappeared above the blocking temperature and no saturation is observed up to ±5 T external field due to the system switching from ferromagnetic state to paramagnetic state. Similarly, the coercive field was decreased from 1021 Oe to zero with increasing the temperature from 5 K to 300 K. The formations of the cobalt oxide layer did not interact with CoPt nanoparticles, therefore, the maximum exchange bias was observed about 93 Oe at 5 K.


Supporting Institution

Cukurova University

Project Number

FBA-2018-10412

Thanks

The authors acknowledge support from Cukurova University, Adana, Turkey, under Scientific Research Funding Grand No: FBA-2018-10412.

References

  • [1] Ethirajan, A., Wiedwald, U., Boyen, H.-G., Kern, B., Han, L., Klimmer, A., Weigl, F., Kästle, G., Ziemann, P., Fauth, K., Cai, J., Behm, R.J., Romanyuk, A., Oelhafen, P., Walther, P., Biskupek, J. and Kaiser, U., A Micellar Approach to Magnetic Ultrahigh-Density Data-Storage Media: Extending the Limits of Current Colloidal Methods, Advanced Materials (Weinheim, Germany), 19(3), 406-410, 2007.
  • [2] Plumer, M.L., Van Ek, J. and Weller, D., The physics of ultra-high-density magnetic recording, Springer Science & Business Media, 2012.
  • [3] Weller, D., Moser, A., Folks, L., Best, M.E., Wen, L., Toney, M.F., Schwickert, M., Thiele, J. and Doerner, M.F., High Ku materials approach to 100 Gbits/in2, IEEE Transactions on Magnetics, 36(1), 10-15, 2000.
  • [4] Himpsel, F., Ortega, J., Mankey, G. and Willis, R., Magnetic nanostructures, Advances in physics, 47(4), 511-597, 1998.
  • [5] Jiles, D., Introduction to magnetism and magnetic materials, CRC press, 2015.
  • [6] Alloyeau, D., Ricolleau, C., Mottet, C., Oikawa, T., Langlois, C., Le Bouar, Y., Braidy, N. and Loiseau, A., Size and shape effects on the order–disorder phase transition in CoPt nanoparticles, Nature Materials, 8, 940, 2009.
  • [7] Barmak, K., Kim, J., Lewis, L.H., Coffey, K.R., Toney, M.F., Kellock, A.J. and Thiele, J.-U., On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films, Journal of Applied Physics, 98(3), 033904, 2005.
  • [8] Chen, Q., Qin, Z., Gan, Q., Xinqi, C., Hai, W., Daming, S., Bixiao, W., Lifeng, X. and Yiwen, T., Designing 3D interconnected continuous nanoporous Co/CoO core–shell nanostructure electrodes for a high-performance pseudocapacitor, Nanotechnology, 28(8), 085401, 2017.
  • [9] Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E.E. and O'Connor, C.J., Gold-coated Iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly, Journal of Solid State Chemistry, 159(1), 26-31, 2001.
  • [10] Mori, K., Kondo, Y. and Yamashita, H., Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction, Physical Chemistry Chemical Physics, 11(39), 8949-8954, 2009.
  • [11] Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C. and Dravid, V.P., Interaction of fatty acid monolayers with Cobalt nanoparticles, Nano Letters, 4(2), 383-386, 2004.
  • [12] Chen, M. and Nikles, D.E., Synthesis of spherical FePd and CoPt nanoparticles, Journal of Applied Physics, 91(10), 8477-8479, 2002.
  • [13] Sobal, N.S., Ebels, U., Möhwald, H. and Giersig, M., Synthesis of Core−Shell PtCo Nanocrystals, Journal of Physical Chemistry B, 107(30), 7351-7354, 2003.
  • [14] Gopinath, S., Sivakumar, K., Karthikeyen, B., Ragupathi, C. and Sundaram, R., Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method, Physica E: Low-dimensional Systems and Nanostructures, 81, 66-70, 2016.
  • [15] Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T. and Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nature Materials, 10(10), 780-786, 2011.
  • [16] Shatrova, N., Yudin, A., Levina, V., Dzidziguri, E., Kuznetsov, D., Perov, N. and Issi, J.-P., Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction, Materials Research Bulletin, 86, 80-87, 2017.
  • [17] Izu, N., Matsubara, I., Uchida, T., Itoh, T. and Shin, W., Synthesis of spherical cobalt oxide nanoparticles by a polyol method, Journal of the Ceramic Society of Japan, 125(9), 701-704, 2017.
  • [18] Salavati-Niasari, M., Khansari, A. and Davar, F., Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process, Inorganica Chimica Acta, 362(14), 4937-4942, 2009.
  • [19] Sinkó, K., Szabó, G. and Zrínyi, M., Liquid-phase synthesis of cobalt oxide nanoparticles, Journal of Nanoscience and Nanotechnology, 11(5), 4127-4135, 2011.
  • [20] Sun, X., Jia, Z., Huang, Y., Harrell, J., Nikles, D., Sun, K. and Wang, L., Synthesis and magnetic properties of CoPt nanoparticles, Journal of Applied Physics, 95(11), 6747-6749, 2004.
  • [21] Aksoy Akgul, F., Akgul, G. and Kurban, M., Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesised by mechanical ball-milling process, Philosophical Magazine, 96(30), 3211-3226, 2016.
  • [22] Wang, X., Ge, H., Ye, Q., Si, P. and Chen, H., Weak Ferromagnetism and Exchange Bias in Antiferromagnetic Cobalt Oxide Nanoparticles, Journal of Magnetics, 23(4), 487-490, 2018.
  • [23] Qiu, B., Guo, W., Liang, Z., Xia, W., Gao, S., Wang, Q., Yu, X., Zhao, R. and Zou, R., Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance, RSC advances, 7(22), 13340-13346, 2017.
  • [24] Liu, Y., Yang, Y., Zhang, Y., Wang, Y., Zhang, X., Jiang, Y., Wei, M., Liu, Y., Liu, X. and Yang, J., A facile route to synthesis of CoPt magnetic nanoparticles, Materials Research Bulletin, 48(2), 721-724, 2013.
  • [25] Trung, T.T., Nhung, D.T., Nam, N.H. and Luong, N.H., Synthesis and Magnetic Properties of CoPt Nanoparticles, Journal of Electronic Materials, 45(7), 3621-3623, 2016.
  • [26] San, B.H., Lee, S., Moh, S.H., Park, J.-G., Lee, J.H., Hwang, H.-Y. and Kim, K.K., Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells, Journal of Materials Chemistry B, 1(10), 1453-1460, 2013.
  • [27] Tournus, F., Tamion, A., Blanc, N., Hannour, A., Bardotti, L., Prével, B., Ohresser, P., Bonet, E., Epicier, T. and Dupuis, V., Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature, Physical Review B, 77(14), 144411, 2008.
  • [28] Frommen, C., Malik, S., Würfel, J.U., Rösner, H. and Didschies, C., Synthesis and magnetic properties of CoPt3 nanoparticle assemblies containing copper, Materials Letters, 58(6), 953-958, 2004.
  • [29] Rooney, P.W., Shapiro, A.L., Tran, M.Q. and Hellman, F., Evidence of a Surface-Mediated Magnetically Induced Miscibility Gap in Co-Pt Alloy Thin Films, Physical Review Letters, 75(9), 1843-1846, 1995.
  • [30] Dai, Q. and Tang, J., The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique, Nanoscale, 5(16), 7512-7519, 2013.
Year 2020, Volume: 10 Issue: 1, 353 - 363, 25.06.2020
https://doi.org/10.37094/adyujsci.709426

Abstract

Project Number

FBA-2018-10412

References

  • [1] Ethirajan, A., Wiedwald, U., Boyen, H.-G., Kern, B., Han, L., Klimmer, A., Weigl, F., Kästle, G., Ziemann, P., Fauth, K., Cai, J., Behm, R.J., Romanyuk, A., Oelhafen, P., Walther, P., Biskupek, J. and Kaiser, U., A Micellar Approach to Magnetic Ultrahigh-Density Data-Storage Media: Extending the Limits of Current Colloidal Methods, Advanced Materials (Weinheim, Germany), 19(3), 406-410, 2007.
  • [2] Plumer, M.L., Van Ek, J. and Weller, D., The physics of ultra-high-density magnetic recording, Springer Science & Business Media, 2012.
  • [3] Weller, D., Moser, A., Folks, L., Best, M.E., Wen, L., Toney, M.F., Schwickert, M., Thiele, J. and Doerner, M.F., High Ku materials approach to 100 Gbits/in2, IEEE Transactions on Magnetics, 36(1), 10-15, 2000.
  • [4] Himpsel, F., Ortega, J., Mankey, G. and Willis, R., Magnetic nanostructures, Advances in physics, 47(4), 511-597, 1998.
  • [5] Jiles, D., Introduction to magnetism and magnetic materials, CRC press, 2015.
  • [6] Alloyeau, D., Ricolleau, C., Mottet, C., Oikawa, T., Langlois, C., Le Bouar, Y., Braidy, N. and Loiseau, A., Size and shape effects on the order–disorder phase transition in CoPt nanoparticles, Nature Materials, 8, 940, 2009.
  • [7] Barmak, K., Kim, J., Lewis, L.H., Coffey, K.R., Toney, M.F., Kellock, A.J. and Thiele, J.-U., On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films, Journal of Applied Physics, 98(3), 033904, 2005.
  • [8] Chen, Q., Qin, Z., Gan, Q., Xinqi, C., Hai, W., Daming, S., Bixiao, W., Lifeng, X. and Yiwen, T., Designing 3D interconnected continuous nanoporous Co/CoO core–shell nanostructure electrodes for a high-performance pseudocapacitor, Nanotechnology, 28(8), 085401, 2017.
  • [9] Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E.E. and O'Connor, C.J., Gold-coated Iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly, Journal of Solid State Chemistry, 159(1), 26-31, 2001.
  • [10] Mori, K., Kondo, Y. and Yamashita, H., Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction, Physical Chemistry Chemical Physics, 11(39), 8949-8954, 2009.
  • [11] Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C. and Dravid, V.P., Interaction of fatty acid monolayers with Cobalt nanoparticles, Nano Letters, 4(2), 383-386, 2004.
  • [12] Chen, M. and Nikles, D.E., Synthesis of spherical FePd and CoPt nanoparticles, Journal of Applied Physics, 91(10), 8477-8479, 2002.
  • [13] Sobal, N.S., Ebels, U., Möhwald, H. and Giersig, M., Synthesis of Core−Shell PtCo Nanocrystals, Journal of Physical Chemistry B, 107(30), 7351-7354, 2003.
  • [14] Gopinath, S., Sivakumar, K., Karthikeyen, B., Ragupathi, C. and Sundaram, R., Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method, Physica E: Low-dimensional Systems and Nanostructures, 81, 66-70, 2016.
  • [15] Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T. and Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nature Materials, 10(10), 780-786, 2011.
  • [16] Shatrova, N., Yudin, A., Levina, V., Dzidziguri, E., Kuznetsov, D., Perov, N. and Issi, J.-P., Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction, Materials Research Bulletin, 86, 80-87, 2017.
  • [17] Izu, N., Matsubara, I., Uchida, T., Itoh, T. and Shin, W., Synthesis of spherical cobalt oxide nanoparticles by a polyol method, Journal of the Ceramic Society of Japan, 125(9), 701-704, 2017.
  • [18] Salavati-Niasari, M., Khansari, A. and Davar, F., Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process, Inorganica Chimica Acta, 362(14), 4937-4942, 2009.
  • [19] Sinkó, K., Szabó, G. and Zrínyi, M., Liquid-phase synthesis of cobalt oxide nanoparticles, Journal of Nanoscience and Nanotechnology, 11(5), 4127-4135, 2011.
  • [20] Sun, X., Jia, Z., Huang, Y., Harrell, J., Nikles, D., Sun, K. and Wang, L., Synthesis and magnetic properties of CoPt nanoparticles, Journal of Applied Physics, 95(11), 6747-6749, 2004.
  • [21] Aksoy Akgul, F., Akgul, G. and Kurban, M., Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesised by mechanical ball-milling process, Philosophical Magazine, 96(30), 3211-3226, 2016.
  • [22] Wang, X., Ge, H., Ye, Q., Si, P. and Chen, H., Weak Ferromagnetism and Exchange Bias in Antiferromagnetic Cobalt Oxide Nanoparticles, Journal of Magnetics, 23(4), 487-490, 2018.
  • [23] Qiu, B., Guo, W., Liang, Z., Xia, W., Gao, S., Wang, Q., Yu, X., Zhao, R. and Zou, R., Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance, RSC advances, 7(22), 13340-13346, 2017.
  • [24] Liu, Y., Yang, Y., Zhang, Y., Wang, Y., Zhang, X., Jiang, Y., Wei, M., Liu, Y., Liu, X. and Yang, J., A facile route to synthesis of CoPt magnetic nanoparticles, Materials Research Bulletin, 48(2), 721-724, 2013.
  • [25] Trung, T.T., Nhung, D.T., Nam, N.H. and Luong, N.H., Synthesis and Magnetic Properties of CoPt Nanoparticles, Journal of Electronic Materials, 45(7), 3621-3623, 2016.
  • [26] San, B.H., Lee, S., Moh, S.H., Park, J.-G., Lee, J.H., Hwang, H.-Y. and Kim, K.K., Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells, Journal of Materials Chemistry B, 1(10), 1453-1460, 2013.
  • [27] Tournus, F., Tamion, A., Blanc, N., Hannour, A., Bardotti, L., Prével, B., Ohresser, P., Bonet, E., Epicier, T. and Dupuis, V., Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature, Physical Review B, 77(14), 144411, 2008.
  • [28] Frommen, C., Malik, S., Würfel, J.U., Rösner, H. and Didschies, C., Synthesis and magnetic properties of CoPt3 nanoparticle assemblies containing copper, Materials Letters, 58(6), 953-958, 2004.
  • [29] Rooney, P.W., Shapiro, A.L., Tran, M.Q. and Hellman, F., Evidence of a Surface-Mediated Magnetically Induced Miscibility Gap in Co-Pt Alloy Thin Films, Physical Review Letters, 75(9), 1843-1846, 1995.
  • [30] Dai, Q. and Tang, J., The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique, Nanoscale, 5(16), 7512-7519, 2013.
There are 30 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics
Journal Section Physics
Authors

Doğan Kaya 0000-0002-6313-7501

İdris Adanur 0000-0002-0160-5074

Mustafa Akyol 0000-0001-8584-0620

Faruk Karadağ 0000-0001-7862-9085

Ahmet Ekicibil 0000-0003-3071-0444

Project Number FBA-2018-10412
Publication Date June 25, 2020
Submission Date March 26, 2020
Acceptance Date May 7, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Kaya, D., Adanur, İ., Akyol, M., Karadağ, F., et al. (2020). Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles. Adıyaman University Journal of Science, 10(1), 353-363. https://doi.org/10.37094/adyujsci.709426
AMA Kaya D, Adanur İ, Akyol M, Karadağ F, Ekicibil A. Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles. ADYU J SCI. June 2020;10(1):353-363. doi:10.37094/adyujsci.709426
Chicago Kaya, Doğan, İdris Adanur, Mustafa Akyol, Faruk Karadağ, and Ahmet Ekicibil. “Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles”. Adıyaman University Journal of Science 10, no. 1 (June 2020): 353-63. https://doi.org/10.37094/adyujsci.709426.
EndNote Kaya D, Adanur İ, Akyol M, Karadağ F, Ekicibil A (June 1, 2020) Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles. Adıyaman University Journal of Science 10 1 353–363.
IEEE D. Kaya, İ. Adanur, M. Akyol, F. Karadağ, and A. Ekicibil, “Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles”, ADYU J SCI, vol. 10, no. 1, pp. 353–363, 2020, doi: 10.37094/adyujsci.709426.
ISNAD Kaya, Doğan et al. “Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles”. Adıyaman University Journal of Science 10/1 (June 2020), 353-363. https://doi.org/10.37094/adyujsci.709426.
JAMA Kaya D, Adanur İ, Akyol M, Karadağ F, Ekicibil A. Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles. ADYU J SCI. 2020;10:353–363.
MLA Kaya, Doğan et al. “Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles”. Adıyaman University Journal of Science, vol. 10, no. 1, 2020, pp. 353-6, doi:10.37094/adyujsci.709426.
Vancouver Kaya D, Adanur İ, Akyol M, Karadağ F, Ekicibil A. Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles. ADYU J SCI. 2020;10(1):353-6.

...