Research Article
BibTex RIS Cite

Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces

Year 2020, Volume: 10 Issue: 2, 506 - 523, 30.12.2020
https://doi.org/10.37094/adyujsci.728934

Abstract

In this study, a recent concepts of soft quasilinear spaces and soft proper quasilinear spaces are presented. Further, soft quasi vectors in soft quasilinear spaces are investigated, and several related properties are examined such as quasilinear dependent and quasilinear independent. Also, the concept of soft quasi norm of soft quasilinear spaces is given. Lastly, soft quasilinear operators on soft normed quasilinear spaces are defined, and some results about the bounded soft quasilinear operators and continuous soft quasilinear operators are obtained.

Supporting Institution

Batman University

References

  • [1] Molodtsov, D., Soft set-theory first results, Computational and Applied Mathematics, 37, 19-31, 1999.
  • [2] Das, S., Samanta, S.K., On soft metric spaces, Journal of Fuzzy Mathematics, 21, 707- 734, 2013.
  • [3] Das, S., Samanta, S.K., Soft real sets, soft real numbers and their properties, Journal of Fuzzy Mathematics, 20 (3), 551-576, 2012.
  • [4] Das, S., Majumdar, P., Samanta, K., On soft linear spaces and soft normed linear spaces, Annals of Fuzzy Mathematics and Informatics, 9(1), 91-109, 2015.
  • [5] Das, S., Samanta, S.K., Soft linear operators in soft normed linear spaces, Annals of Fuzzy Mathematics and Informatics, 6(2), 295-314, 2013.
  • [6] Aseev, S.M., Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Mathematics, 2, 23-52, 1986.
  • [7] Yılmaz, Y., Çakan, S., Aytekin, Ş., Topological quasilinear spaces, Abstract and Applied Analysis, (2012), 951374, 2012.
  • [8] Çakan, S., Yılmaz, Y., Normed proper quasilinear spaces, Journal of Nonlinear Sciences and Applications, 8, 816-836, 2015.
  • [9] Yılmaz, Y., Bozkurt, H., Çakan, S., On orthonormal sets in inner product quasilinear spaces, Creative Mathematics and Informatics, 25(2), 237-247, 2016.
  • [10] Levent, H., Yilmaz, Y., Hahn- Banach extension theorem for interval-valued functions and existence of quasilinear functionals, New Trends in Mathematical Sciences, 6(2), 19-28, 2018.
  • [11] Levent, H., Yilmaz, Y., Translation, modulation and dilation systems set-valued signal processing, Carpathian Mathematical Publications, 10(1), 143-164, 2018.
  • [12] Maji, P.K., Biswas, R., Roy, A.R., Soft set theory, Computational and Applied Mathematics, 45, 555-562, 2003.
  • [13] Feng, F., Jun, Y. B., Zhao, X., Soft semiring, Computational and Applied Mathematics, 56, 2621-2628, 2008.
  • [14] Das, S., Samanta, S.K., Soft metric, Annals of Fuzzy Mathematics and Informatics, 6(1), 77-94, 2013.
  • [15] Bayramov, S., Gündüz (Aras), C., Soft locally compact and soft paracompact spaces, Journal of Mathematics and System Science, 3, 122-130, 2013.
  • [16] Yazar, M.İ., Bilgin, T., Bayramov, S., Gündüz, Ç., A new view on soft normed spaces, International Mathematical Forum, 9(24), 1149-1159, 2014.

Esnek Quasilineer Uzaylar ve Esnek Normlu Quasilineer Uzaylar

Year 2020, Volume: 10 Issue: 2, 506 - 523, 30.12.2020
https://doi.org/10.37094/adyujsci.728934

Abstract

Bu çalışmada, yeni bir kavram olan esnek quasilineer uzay ve esnek proper quasilineer uzay kavramları sunulmuştur. Ayrıca esnek quasilineer uzayda bir esnek quasi vektör tanımı verilmiş ve bu yeni kavram ile ilgili quasilineer bağımlılık-bağımsızlık özellikleri ele alınmıştır. Esnek quasilineer uzaylarda esnek quasi norm kavramı tanıtılmıştır. Son olarak bir esnek normlu quasilineer uzayda esnek quasilineer operatör tanımı verilmiş ve sınırlı esnek quasilineer operatör ile sürekli esnek quasilineer operatörlerle ilgili bazı sonuçlar elde edilmiştir.

References

  • [1] Molodtsov, D., Soft set-theory first results, Computational and Applied Mathematics, 37, 19-31, 1999.
  • [2] Das, S., Samanta, S.K., On soft metric spaces, Journal of Fuzzy Mathematics, 21, 707- 734, 2013.
  • [3] Das, S., Samanta, S.K., Soft real sets, soft real numbers and their properties, Journal of Fuzzy Mathematics, 20 (3), 551-576, 2012.
  • [4] Das, S., Majumdar, P., Samanta, K., On soft linear spaces and soft normed linear spaces, Annals of Fuzzy Mathematics and Informatics, 9(1), 91-109, 2015.
  • [5] Das, S., Samanta, S.K., Soft linear operators in soft normed linear spaces, Annals of Fuzzy Mathematics and Informatics, 6(2), 295-314, 2013.
  • [6] Aseev, S.M., Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Mathematics, 2, 23-52, 1986.
  • [7] Yılmaz, Y., Çakan, S., Aytekin, Ş., Topological quasilinear spaces, Abstract and Applied Analysis, (2012), 951374, 2012.
  • [8] Çakan, S., Yılmaz, Y., Normed proper quasilinear spaces, Journal of Nonlinear Sciences and Applications, 8, 816-836, 2015.
  • [9] Yılmaz, Y., Bozkurt, H., Çakan, S., On orthonormal sets in inner product quasilinear spaces, Creative Mathematics and Informatics, 25(2), 237-247, 2016.
  • [10] Levent, H., Yilmaz, Y., Hahn- Banach extension theorem for interval-valued functions and existence of quasilinear functionals, New Trends in Mathematical Sciences, 6(2), 19-28, 2018.
  • [11] Levent, H., Yilmaz, Y., Translation, modulation and dilation systems set-valued signal processing, Carpathian Mathematical Publications, 10(1), 143-164, 2018.
  • [12] Maji, P.K., Biswas, R., Roy, A.R., Soft set theory, Computational and Applied Mathematics, 45, 555-562, 2003.
  • [13] Feng, F., Jun, Y. B., Zhao, X., Soft semiring, Computational and Applied Mathematics, 56, 2621-2628, 2008.
  • [14] Das, S., Samanta, S.K., Soft metric, Annals of Fuzzy Mathematics and Informatics, 6(1), 77-94, 2013.
  • [15] Bayramov, S., Gündüz (Aras), C., Soft locally compact and soft paracompact spaces, Journal of Mathematics and System Science, 3, 122-130, 2013.
  • [16] Yazar, M.İ., Bilgin, T., Bayramov, S., Gündüz, Ç., A new view on soft normed spaces, International Mathematical Forum, 9(24), 1149-1159, 2014.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Hacer Bozkurt 0000-0002-2216-2516

Publication Date December 30, 2020
Submission Date April 29, 2020
Acceptance Date November 9, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Bozkurt, H. (2020). Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces. Adıyaman University Journal of Science, 10(2), 506-523. https://doi.org/10.37094/adyujsci.728934
AMA Bozkurt H. Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces. ADYU J SCI. December 2020;10(2):506-523. doi:10.37094/adyujsci.728934
Chicago Bozkurt, Hacer. “Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces”. Adıyaman University Journal of Science 10, no. 2 (December 2020): 506-23. https://doi.org/10.37094/adyujsci.728934.
EndNote Bozkurt H (December 1, 2020) Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces. Adıyaman University Journal of Science 10 2 506–523.
IEEE H. Bozkurt, “Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces”, ADYU J SCI, vol. 10, no. 2, pp. 506–523, 2020, doi: 10.37094/adyujsci.728934.
ISNAD Bozkurt, Hacer. “Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces”. Adıyaman University Journal of Science 10/2 (December 2020), 506-523. https://doi.org/10.37094/adyujsci.728934.
JAMA Bozkurt H. Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces. ADYU J SCI. 2020;10:506–523.
MLA Bozkurt, Hacer. “Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces”. Adıyaman University Journal of Science, vol. 10, no. 2, 2020, pp. 506-23, doi:10.37094/adyujsci.728934.
Vancouver Bozkurt H. Soft Quasilinear Spaces and Soft Normed Quasilinear Spaces. ADYU J SCI. 2020;10(2):506-23.

...