Research Article
BibTex RIS Cite
Year 2021, Volume: 11 Issue: 1, 48 - 58, 30.06.2021
https://doi.org/10.37094/adyujsci.754497

Abstract

References

  • [1] Paskov, P.P., Refractive indices of InSb, InAs, GaSb, InAsxSb1−x, and In1−xGaxSb: Effects of free carriers, Journal of Applied Physics, 81(4) 1890-1898, 1997.
  • [2] Rappl, P.H.O., McCann, P.J., Development of a novel epitaxial-layer segmentation method for optoelectronic device fabrication, IEEE Photonics Technology Letters, 15(3), 374-376, 2003.
  • [3] Tripathy, S.K., Refractive indices of semiconductors from energy gaps, Optical Materials, 46, 240-246, 2015.
  • [4] Penn, D.R., Wave-Number-Dependent Dielectric Function of Semiconductors, Physical Review, 128(5), 2093-2097, 1962.
  • [5] Naccarato, F., Ricci, F., Suntivich, J., Hautier, G., Wirtz, L., Rignanese, G.M., Searching for materials with high refractive index and wide band gap: A first-principles high-throughput study, Physical Review Materials, 3(4), 044602, 2019.
  • [6] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Reddy, C.V.K., Ahmed, S.N., Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides, Optical Materials, 31(2), 209-212, 2008.
  • [7] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Balakrishnaiah, G., Kumar, M.R., Interrelationship between structural, optical, electronic and elastic properties of materials, Journal of Alloys and Compounds, 473(1-2), 28-35, 2009.
  • [8] Ahmad, S., Ashraf, M., Ahmad, A., Singh, D.V., Electronic and Optical Properties of Semiconductor and Alkali Halides, Arabian Journal for Science and Engineering, 38(7), 1889-1894, 2013.
  • [9] Dalgarno, A., Kingston, A.E., The refractive indices and Verdet constants of the inert gases, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 259(1298), 424-431, 1960.
  • [10] Rogers, E.T.F., Modelling of Capillary High Harmonic Generation, PhD thesis, University of Southampton, 2008.
  • [11] Cuthbertson, C., XI. New determinations of some constants of the inert gases, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(121), 69-77, 1911.
  • [12] Cuthbertson, C., Cuthbertson, M., The refraction and dispersion of neon and helium, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 135(826), 40-47, 1932.
  • [13] Korff, S.A., Breit, G., Optical Dispersion, Reviews of Modern Physics, 4(3), 471-503, 1932.
  • [14] Ingersoll, L.R., Liebenberg, D.H., Faraday Effect in Gases and Vapors. II, Journal of the Optical Society of America, 46(7), 538-542, 1956.
  • [15] Pekeris, C.L., 11S and 23S States of Helium, Physical Review, 115(5), 1216-1221, 1959.
  • [16] Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A., Zucker, D.S., X-Ray Form Factor, Attenuation, and Scattering Tables, 22 Mayıs 2020 tarihinde https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables web sitesinden alınmıştır.
  • [17] Chantler, C.T., Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30–36, Z=60–89, E=0.1 keV–10 keV), Addressing Convergence Issues of Earlier Work, Journal of Physical and Chemical Reference Data, 29(4), 597-1056, 2000.
  • [18] Chantler, C.T., Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV, Journal of Physical and Chemical Reference Data, 24(1), 71-643, 1995.
  • [19] Mathematica Version 10.0., Wolfram Research, Inc., Champaign, Illinois, 2014.
  • [20] Ciddor, P.E., Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials:erratum, Applied Optics, 41(33), 7036-7036, 2002.
  • [21] Henke, B.L., Gullikson, E.M., Davis, J.C., X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92, Atomic Data and Nuclear Data Tables, 54(2), 181-342, 1993.

Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software

Year 2021, Volume: 11 Issue: 1, 48 - 58, 30.06.2021
https://doi.org/10.37094/adyujsci.754497

Abstract

In this study, refractive indices in the visible, near infrared and extreme ultraviolet (XUV) region are calculated based on Mathematica software. Atomic scattering factors are simulated for high photon energy range (20-60eV). By using the atomic scattering factors, the real and imaginary part of index of refraction values are plotted as a function of photon energy. The aim of this work is to present a computational program, which calculates the index of refraction of the inert gases at different wavelength regions. The refractive indices of gases, namely helium (He), neon (Ne), argon (Ar) and xenon (Xe) in the near infrared and XUV region are computed by using a Mathematica software. The applications of the index of refraction are discussed through the paper. The Mathematica program calculating the refractive indices is presented in the Appendix.

References

  • [1] Paskov, P.P., Refractive indices of InSb, InAs, GaSb, InAsxSb1−x, and In1−xGaxSb: Effects of free carriers, Journal of Applied Physics, 81(4) 1890-1898, 1997.
  • [2] Rappl, P.H.O., McCann, P.J., Development of a novel epitaxial-layer segmentation method for optoelectronic device fabrication, IEEE Photonics Technology Letters, 15(3), 374-376, 2003.
  • [3] Tripathy, S.K., Refractive indices of semiconductors from energy gaps, Optical Materials, 46, 240-246, 2015.
  • [4] Penn, D.R., Wave-Number-Dependent Dielectric Function of Semiconductors, Physical Review, 128(5), 2093-2097, 1962.
  • [5] Naccarato, F., Ricci, F., Suntivich, J., Hautier, G., Wirtz, L., Rignanese, G.M., Searching for materials with high refractive index and wide band gap: A first-principles high-throughput study, Physical Review Materials, 3(4), 044602, 2019.
  • [6] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Reddy, C.V.K., Ahmed, S.N., Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides, Optical Materials, 31(2), 209-212, 2008.
  • [7] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Balakrishnaiah, G., Kumar, M.R., Interrelationship between structural, optical, electronic and elastic properties of materials, Journal of Alloys and Compounds, 473(1-2), 28-35, 2009.
  • [8] Ahmad, S., Ashraf, M., Ahmad, A., Singh, D.V., Electronic and Optical Properties of Semiconductor and Alkali Halides, Arabian Journal for Science and Engineering, 38(7), 1889-1894, 2013.
  • [9] Dalgarno, A., Kingston, A.E., The refractive indices and Verdet constants of the inert gases, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 259(1298), 424-431, 1960.
  • [10] Rogers, E.T.F., Modelling of Capillary High Harmonic Generation, PhD thesis, University of Southampton, 2008.
  • [11] Cuthbertson, C., XI. New determinations of some constants of the inert gases, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(121), 69-77, 1911.
  • [12] Cuthbertson, C., Cuthbertson, M., The refraction and dispersion of neon and helium, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 135(826), 40-47, 1932.
  • [13] Korff, S.A., Breit, G., Optical Dispersion, Reviews of Modern Physics, 4(3), 471-503, 1932.
  • [14] Ingersoll, L.R., Liebenberg, D.H., Faraday Effect in Gases and Vapors. II, Journal of the Optical Society of America, 46(7), 538-542, 1956.
  • [15] Pekeris, C.L., 11S and 23S States of Helium, Physical Review, 115(5), 1216-1221, 1959.
  • [16] Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A., Zucker, D.S., X-Ray Form Factor, Attenuation, and Scattering Tables, 22 Mayıs 2020 tarihinde https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables web sitesinden alınmıştır.
  • [17] Chantler, C.T., Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30–36, Z=60–89, E=0.1 keV–10 keV), Addressing Convergence Issues of Earlier Work, Journal of Physical and Chemical Reference Data, 29(4), 597-1056, 2000.
  • [18] Chantler, C.T., Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV, Journal of Physical and Chemical Reference Data, 24(1), 71-643, 1995.
  • [19] Mathematica Version 10.0., Wolfram Research, Inc., Champaign, Illinois, 2014.
  • [20] Ciddor, P.E., Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials:erratum, Applied Optics, 41(33), 7036-7036, 2002.
  • [21] Henke, B.L., Gullikson, E.M., Davis, J.C., X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92, Atomic Data and Nuclear Data Tables, 54(2), 181-342, 1993.
There are 21 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics
Journal Section Physics
Authors

Muhammed Sayraç 0000-0003-4373-6897

Publication Date June 30, 2021
Submission Date June 18, 2020
Acceptance Date April 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Sayraç, M. (2021). Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software. Adıyaman University Journal of Science, 11(1), 48-58. https://doi.org/10.37094/adyujsci.754497
AMA Sayraç M. Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software. ADYU J SCI. June 2021;11(1):48-58. doi:10.37094/adyujsci.754497
Chicago Sayraç, Muhammed. “Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region Based on Mathematica Software”. Adıyaman University Journal of Science 11, no. 1 (June 2021): 48-58. https://doi.org/10.37094/adyujsci.754497.
EndNote Sayraç M (June 1, 2021) Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software. Adıyaman University Journal of Science 11 1 48–58.
IEEE M. Sayraç, “Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software”, ADYU J SCI, vol. 11, no. 1, pp. 48–58, 2021, doi: 10.37094/adyujsci.754497.
ISNAD Sayraç, Muhammed. “Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region Based on Mathematica Software”. Adıyaman University Journal of Science 11/1 (June 2021), 48-58. https://doi.org/10.37094/adyujsci.754497.
JAMA Sayraç M. Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software. ADYU J SCI. 2021;11:48–58.
MLA Sayraç, Muhammed. “Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region Based on Mathematica Software”. Adıyaman University Journal of Science, vol. 11, no. 1, 2021, pp. 48-58, doi:10.37094/adyujsci.754497.
Vancouver Sayraç M. Computation of Refractive Index Values of Inert Gases at Near Infrared and XUV Region based on Mathematica Software. ADYU J SCI. 2021;11(1):48-5.

...