Research Article
BibTex RIS Cite

Eksojen Gibberellin (GA3) Uygulamasının Tuz Stresi Altındaki Arpa Tohumlarının Çimlenmesine Fizyolojik ve Moleküler Etkileri

Year 2021, Volume: 11 Issue: 2, 227 - 243, 31.12.2021
https://doi.org/10.37094/adyujsci.904266

Abstract

Tuzluluk, bitkilerde tohum çimlenme oranı ve yüzdesi gibi çimlenme parametrelerini kısıtlayan en önemli faktörlerden biri olarak kabul edilmektedir. Bu çalışma, tuz stresi (120 mM NaCl) altında çimlendirilen arpa (Hordeum vulgare L.) tohumlarına eksojen olarak uygulanan 10 mg/L giberellik asidin (GA3) stresi hafifletici rolüne odaklanmıştır. İmbibisyondan 3 gün sonra tuz stresi altında giberellik asit (GA3) ile veya onsuz gerçekleşen fizyolojik ve morfolojik değişiklikler ve farklılaşmış gen anlatımı belirlendi ve karşılaştırıldı. Eksojen GA3'ün, tuz stresi altında filizlenmiş arpa tohumlarının sürgün ve kök uzunluğunu, yalnızca tuz ile muamele edilenlere kıyasla sırasıyla %67 ve %15 arttırdığı bulundu. Öte yandan, eksojen GA3 uygulaması tuzluluk altında iyon sızıntısını, ozmolit birikimini ve prolin içeriğini anlamlı şekilde azaltmıştır. NaCl'nin imbibisyondan 3 gün sonra HvABI5, HvABA7 ve HvKO1 genlerinin anlatımını sırasıyla 3, 10 ve 33 kat azalttığı bulunurken, kök besiyerine GA3 eklenmesinin bu genlerin anlatım seviyelerini kontrol grubunun seviyesine çıkarmıştır. Ayrıca, eksojen GA3 tuz stresi altında çimlenen örneklerde HvGA2ox4'ün mRNA seviyesini anlamlı derecede azaltmıştır. Bu çalışma, tuzluluk stresi ile GA3 metabolizması ve çimlenme ile ilgili genler arasındaki ilişki hakkında fikir verebilir.

Supporting Institution

İstanbul Üniversitesi BAP

Project Number

25516

References

  • [1] Zhu, J.K., Abiotic stress signaling and responses in plants, Cell 167, 313-324, 2016.
  • [2] Munns, R., Tester, M. Mechanisms of salinity tolerance, Annual Review of Plant Biology, 59, 651-681, 2008.
  • [3] Hasanuzzaman, M., Nahar, K., Fujita, M., Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V., (editors), Ecophysiology and responses of plants under salt stress, Springer, New York, pp. 25-87, 2013.
  • [4] Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S, et al., An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation, International Journal of Molecular Sciences, 21(1), 148, 2020.
  • [5] Ibrahim, E.A., Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology 192, 38-46, 2016.
  • [6] Amirbakhtiar, N., Ismaili, A., Ghaffari, M.R., Nazarian F., Shobbar, Z.S., Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar, PLoSONE, 14(3), e0213305, 2019.
  • [7] Uçarlı, C., Gürel, F., Differential physiological and molecular responses of three‑leaf stage barley (Hordeum vulgare L.) under salt stress within hours, Plant Biotechnology Reports, 14, 89-97, 2020.
  • [8] Tuan, P.A., Kumar, R., Rehal, P.K., Toora, P.K., Ayele, B.T., Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science, 9, 668, 2018.
  • [9] Miransari, M., Smith, D.L., Plant hormones and seed germination, Environmental and Experimental Botany, 99, 110–121, 2014.
  • [10] Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd‐Allah, E.F., Hashem, A., Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness, Frontiers in Microbiology, 8, 1-14, 2017.
  • [11] Liu, X., Hou, X., Antagonistic regulation of ABA and GA in metabolism and signaling pathways, Frontiers in Plant Science, 9:251, 2018.
  • [12] Hedden, P., Sponsel, V., A century of gibberellin research, Journal of Plant Growth Regulation, 34, 740-760, 2015.
  • [13] Binenbaum, J., Weinstain, R., Shani, E., Gibberellin localization and transport in plants, Trends in Plant Science, 23, 410-421, 2018.
  • [14] Manjili, F.A., Sedghi, M., Pessarakli, M., Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress, Journal of Plant Nutrition 35(7),1098-11, 2012.
  • [15] Zehra, A., Shaikh, F., Ansari, R., Gul, B., Khan, M.A., Effect of ascorbic acid on seed germination of three halophytic grass species under saline conditions. Grass and Forage Science, 68, 339-344, 2013.
  • [16] Yamaguchi, S., Gibberellin metabolism and its regulation, Annual Review of Plant Biology, 59, 225-251, 2008.
  • [17] Kai, K., Kasa, S., Sakamoto, M., Aoki, N., Watabe, G., et al., Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signaling and Behavior, 11: e1180492.35, 753-759, 2016.
  • [18] Chandler, P.M., Marion-Poll, A., Ellis, M., Gubler, F., Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization, Plant Physiology, 129:, 181-190, 2002.
  • [19] Davière, J.M., Achard, P., A pivotal role of DELLAs in regulating multiple hormone signals, Molecular Plant, 9, 10-20, 2016.
  • [20] Zhou, M., Barley production and consumption. In: Zhang, G., Li, C., (editors), Genetics and improvement of barley malt quality, Springer-Verlag, Berlin Heidelberg, pp. 1-17, 2010.
  • [21] Gao, R., Duan, K., Guo, G., Du, Z., Chen, Z., et al., Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage, International journal of Genomics, 972852, 2013.
  • [22] Al-Karaki, G.N., Germination, sodium, and potassium concentrations of barley seeds as influenced by salinity, Journal of Plant Nutrition, 24(3), 511-522, 2001.
  • [23] Carillo, P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A., et al., Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine, Functional Plant Biology, 35(5), 412-426, 2008.
  • [24] Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method, Methods, 25, 40-408, 2001.
  • [25] Potokina, E., Sreenivasulu, N., Altschmied, L., Michalek, W., Graner, A., Differential gene expression during seed germination in barley (Hordeum vulgare L.), Functional and Integrative Genomics, 2, 28-39, 2002.
  • [26] Atia, A., Debez, A., Barhoumi, Z., Smaoui, A., Abdelly, C., ABA, GA3, and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions, Comptes Rendus Biologie 332, 704-710, 2009.
  • [27] Ghosh, S, Mitra, S., Paul, A., Physiochemical studies of sodium chloride on mungbean (Vigna radiate L. Wilczek) and its possible recovery with spermine and gibberellic acid, The Scientific World Journal, Article ID 858016, 2015.
  • [28] Abdel-Hamid, A.M.E., Mohamed, H.I., The effect of the exogenous gibberellic acid on two salt stressed barley cultivars, European Scientific Journal, 10, 228-245, 2014.
  • [29] Maggio, A., Barbieri, G., Raimondi, G., De Pascale, S., Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity, Journal of Plant Growth Regulation, 2, 63–72, 2010.
  • [30] Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R. et al., Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress, Colloids and Surfaces. B, Biointerfaces, 59, 141-149, 2007.
  • [31] Verbruggen, N., Hermans, C., Proline accumulation in plants: a review, Amino Acids, 35(4), 753-759, 2008.
  • [32] Tuna, A.L., Kaya, C., Dikilitas, M., Higgs, D., The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9, 2008.
  • [33] Chunthaburee, S., Sanitchon, J., Pattanagul, W., Theerakulpisut, P. Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid, Notulae botanicae Horti Agrobotanic Cluj-Napoca, 42, 405-413, 2014.
  • [34] Li, Q.Y., Niu, H.B., Yin, J., Wang, M.B., Shao, H.B., et al., Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare), Colloids and Surfaces. B, Biointerfaces, 65, 220-225, 2008.
  • [35] Huang, Y., Yang, W., Pei, Z., Guo, X., Liu, D., et al., The genes for gibberellin biosynthesis in wheat. Functional and Integrative Genomics, 12, 199-206, 2012.
  • [36] Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., Oda, K., The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis, Plant Journal, 56, 613-626, 2008.
  • [37] Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., et al., Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating aba biosynthesis, Frontiers in Plant Science, 8, 1372, 2017.
  • [38] Izydorczyk, C., Nguyen, T.N., Jo, S., Son, S., Tuan, P.A., et al., Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signaling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.), Plant Cell Environment, 41, 1022-1037, 2017.
  • [39] Zeng, D.E., Hou, P., Xiao, F., Liu, Y., Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L., Journal of Plant Biochemistry and Biotechnology, 24, 56-64, 2015.
  • [40] Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X., et al., Expression analysis of barley (Hordeum vulgare L.) during salinity stress, Functional and Integrative Genomics, 6, 143-156, 2006.
  • [41] Gürel, F., Öztürk, N.Z., Yörük, E., Uçarlı, C., Poyraz, N., Comparison of expression patterns of selected drought-responsive genes in barley (Hordeum vulgare L.) under shock-dehydration and slow drought treatments. Plant Growth Regulation, 80, 183-193, 2016.

Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress

Year 2021, Volume: 11 Issue: 2, 227 - 243, 31.12.2021
https://doi.org/10.37094/adyujsci.904266

Abstract

Salinity is considered as one of the most important factors restricting germination parameters including rate and percentage of seed germination in crops. This study focused on the alleviating role of exogenously applied 10 mg/L gibberellic acid (GA3) on barley (Hordeum vulgare L.) seeds during germination under salt stress (120 mM NaCl). Physiological and morphological changes, and differential gene expression at 3 days after imbibition (DAI) were determined and compared with or without gibberellic acid (GA3) under salt stress. Exogenous GA3 was found to increase the shoot and root length of germinated barley seeds under salt stress by 67 and 15%, respectively, compared to those treated with salinity alone. On the other hand, exogenous GA3 treatment significantly reduced ion leakage, osmolyte accumulation, and proline content under salinity. NaCl was found to decrease the expression of the HvABI5, HvABA7 and HvKO1 by 3, 10, and 33 fold, respectively, at 3 DAI, whereas addition of GA3 in root medium rescued the expression of these genes to control levels. Besides, exogenous GA3 significantly promoted the decreased mRNA level of HvGA2ox2 due to salinity during germination. This study may give insight into the relationship between salinity stress and the genes involved in GA3 metabolism and germination.

Project Number

25516

References

  • [1] Zhu, J.K., Abiotic stress signaling and responses in plants, Cell 167, 313-324, 2016.
  • [2] Munns, R., Tester, M. Mechanisms of salinity tolerance, Annual Review of Plant Biology, 59, 651-681, 2008.
  • [3] Hasanuzzaman, M., Nahar, K., Fujita, M., Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V., (editors), Ecophysiology and responses of plants under salt stress, Springer, New York, pp. 25-87, 2013.
  • [4] Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S, et al., An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation, International Journal of Molecular Sciences, 21(1), 148, 2020.
  • [5] Ibrahim, E.A., Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology 192, 38-46, 2016.
  • [6] Amirbakhtiar, N., Ismaili, A., Ghaffari, M.R., Nazarian F., Shobbar, Z.S., Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar, PLoSONE, 14(3), e0213305, 2019.
  • [7] Uçarlı, C., Gürel, F., Differential physiological and molecular responses of three‑leaf stage barley (Hordeum vulgare L.) under salt stress within hours, Plant Biotechnology Reports, 14, 89-97, 2020.
  • [8] Tuan, P.A., Kumar, R., Rehal, P.K., Toora, P.K., Ayele, B.T., Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science, 9, 668, 2018.
  • [9] Miransari, M., Smith, D.L., Plant hormones and seed germination, Environmental and Experimental Botany, 99, 110–121, 2014.
  • [10] Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd‐Allah, E.F., Hashem, A., Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness, Frontiers in Microbiology, 8, 1-14, 2017.
  • [11] Liu, X., Hou, X., Antagonistic regulation of ABA and GA in metabolism and signaling pathways, Frontiers in Plant Science, 9:251, 2018.
  • [12] Hedden, P., Sponsel, V., A century of gibberellin research, Journal of Plant Growth Regulation, 34, 740-760, 2015.
  • [13] Binenbaum, J., Weinstain, R., Shani, E., Gibberellin localization and transport in plants, Trends in Plant Science, 23, 410-421, 2018.
  • [14] Manjili, F.A., Sedghi, M., Pessarakli, M., Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress, Journal of Plant Nutrition 35(7),1098-11, 2012.
  • [15] Zehra, A., Shaikh, F., Ansari, R., Gul, B., Khan, M.A., Effect of ascorbic acid on seed germination of three halophytic grass species under saline conditions. Grass and Forage Science, 68, 339-344, 2013.
  • [16] Yamaguchi, S., Gibberellin metabolism and its regulation, Annual Review of Plant Biology, 59, 225-251, 2008.
  • [17] Kai, K., Kasa, S., Sakamoto, M., Aoki, N., Watabe, G., et al., Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signaling and Behavior, 11: e1180492.35, 753-759, 2016.
  • [18] Chandler, P.M., Marion-Poll, A., Ellis, M., Gubler, F., Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization, Plant Physiology, 129:, 181-190, 2002.
  • [19] Davière, J.M., Achard, P., A pivotal role of DELLAs in regulating multiple hormone signals, Molecular Plant, 9, 10-20, 2016.
  • [20] Zhou, M., Barley production and consumption. In: Zhang, G., Li, C., (editors), Genetics and improvement of barley malt quality, Springer-Verlag, Berlin Heidelberg, pp. 1-17, 2010.
  • [21] Gao, R., Duan, K., Guo, G., Du, Z., Chen, Z., et al., Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage, International journal of Genomics, 972852, 2013.
  • [22] Al-Karaki, G.N., Germination, sodium, and potassium concentrations of barley seeds as influenced by salinity, Journal of Plant Nutrition, 24(3), 511-522, 2001.
  • [23] Carillo, P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A., et al., Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine, Functional Plant Biology, 35(5), 412-426, 2008.
  • [24] Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method, Methods, 25, 40-408, 2001.
  • [25] Potokina, E., Sreenivasulu, N., Altschmied, L., Michalek, W., Graner, A., Differential gene expression during seed germination in barley (Hordeum vulgare L.), Functional and Integrative Genomics, 2, 28-39, 2002.
  • [26] Atia, A., Debez, A., Barhoumi, Z., Smaoui, A., Abdelly, C., ABA, GA3, and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions, Comptes Rendus Biologie 332, 704-710, 2009.
  • [27] Ghosh, S, Mitra, S., Paul, A., Physiochemical studies of sodium chloride on mungbean (Vigna radiate L. Wilczek) and its possible recovery with spermine and gibberellic acid, The Scientific World Journal, Article ID 858016, 2015.
  • [28] Abdel-Hamid, A.M.E., Mohamed, H.I., The effect of the exogenous gibberellic acid on two salt stressed barley cultivars, European Scientific Journal, 10, 228-245, 2014.
  • [29] Maggio, A., Barbieri, G., Raimondi, G., De Pascale, S., Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity, Journal of Plant Growth Regulation, 2, 63–72, 2010.
  • [30] Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R. et al., Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress, Colloids and Surfaces. B, Biointerfaces, 59, 141-149, 2007.
  • [31] Verbruggen, N., Hermans, C., Proline accumulation in plants: a review, Amino Acids, 35(4), 753-759, 2008.
  • [32] Tuna, A.L., Kaya, C., Dikilitas, M., Higgs, D., The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9, 2008.
  • [33] Chunthaburee, S., Sanitchon, J., Pattanagul, W., Theerakulpisut, P. Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid, Notulae botanicae Horti Agrobotanic Cluj-Napoca, 42, 405-413, 2014.
  • [34] Li, Q.Y., Niu, H.B., Yin, J., Wang, M.B., Shao, H.B., et al., Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare), Colloids and Surfaces. B, Biointerfaces, 65, 220-225, 2008.
  • [35] Huang, Y., Yang, W., Pei, Z., Guo, X., Liu, D., et al., The genes for gibberellin biosynthesis in wheat. Functional and Integrative Genomics, 12, 199-206, 2012.
  • [36] Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., Oda, K., The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis, Plant Journal, 56, 613-626, 2008.
  • [37] Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., et al., Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating aba biosynthesis, Frontiers in Plant Science, 8, 1372, 2017.
  • [38] Izydorczyk, C., Nguyen, T.N., Jo, S., Son, S., Tuan, P.A., et al., Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signaling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.), Plant Cell Environment, 41, 1022-1037, 2017.
  • [39] Zeng, D.E., Hou, P., Xiao, F., Liu, Y., Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L., Journal of Plant Biochemistry and Biotechnology, 24, 56-64, 2015.
  • [40] Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X., et al., Expression analysis of barley (Hordeum vulgare L.) during salinity stress, Functional and Integrative Genomics, 6, 143-156, 2006.
  • [41] Gürel, F., Öztürk, N.Z., Yörük, E., Uçarlı, C., Poyraz, N., Comparison of expression patterns of selected drought-responsive genes in barley (Hordeum vulgare L.) under shock-dehydration and slow drought treatments. Plant Growth Regulation, 80, 183-193, 2016.
There are 41 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biology
Authors

Cüneyt Uçarlı 0000-0002-9526-576X

Project Number 25516
Publication Date December 31, 2021
Submission Date March 27, 2021
Acceptance Date August 18, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Uçarlı, C. (2021). Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress. Adıyaman University Journal of Science, 11(2), 227-243. https://doi.org/10.37094/adyujsci.904266
AMA Uçarlı C. Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress. ADYU J SCI. December 2021;11(2):227-243. doi:10.37094/adyujsci.904266
Chicago Uçarlı, Cüneyt. “Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress”. Adıyaman University Journal of Science 11, no. 2 (December 2021): 227-43. https://doi.org/10.37094/adyujsci.904266.
EndNote Uçarlı C (December 1, 2021) Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress. Adıyaman University Journal of Science 11 2 227–243.
IEEE C. Uçarlı, “Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress”, ADYU J SCI, vol. 11, no. 2, pp. 227–243, 2021, doi: 10.37094/adyujsci.904266.
ISNAD Uçarlı, Cüneyt. “Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress”. Adıyaman University Journal of Science 11/2 (December 2021), 227-243. https://doi.org/10.37094/adyujsci.904266.
JAMA Uçarlı C. Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress. ADYU J SCI. 2021;11:227–243.
MLA Uçarlı, Cüneyt. “Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress”. Adıyaman University Journal of Science, vol. 11, no. 2, 2021, pp. 227-43, doi:10.37094/adyujsci.904266.
Vancouver Uçarlı C. Physiological and Molecular Effects of Exogenous Gibberellin (GA3) Treatment on Germination of Barley Seeds under Salt Stress. ADYU J SCI. 2021;11(2):227-43.

...