Research Article
BibTex RIS Cite

Çeşitli Meyve Suları ve Şifalı Bitkilerin Prooksidan Aktivitelerinin Altın Nanoküme Biyosensörleri ve Karbonil Yöntemi ile Karşılaştırılması

Year 2021, Volume: 11 Issue: 2, 474 - 486, 31.12.2021
https://doi.org/10.37094/adyujsci.947949

Abstract

Organizmadaki antioksidan ve prooksidan dengesinin prooksidanlar lehine bozulması olarak tanımlanan oksidatif stres koşulları altında, çeşitli hastalıkların oluşumunu tetikleyen ROS türleri meydana gelmektedir. Bu zararlı türlerin biyolojik makromoleküllerin oksidatif hasarına sebep olması prooksidan aktivite olarak ifade edilir. Bu çalışmada yumurta akı proteinleri ile sentezlenen altın nanokümeler kullanılarak nar, kayısı, şeftali ve armut suları ile nane, beyaz çay ve kuşburnu özütlerinin Cu(II)‒katalizli prooksidan aktiviteleri ölçüldü. Florometrik ve spektrofotometrik altın nanoküme biyosensörleri ile karbonil yöntemi kullanıldı. Meyve suları doğrudan saf suyla seyreltilerek kullanıldı. Şifalı bitki örnekleri ise ultrasonik su banyosunda ekstrakte edildikten sonra mikrofiltreden süzülüp buzdolabında saklandı. Meyve suları ve şifalı bitkilerin toplam prooksidan aktiviteleri mM epikateşin eşdeğeri cinsinden hesaplandı ve tüm yöntemlerin uygulanmasıyla elde edilen sonuçlar birbirleri ile karşılaştırıldı. Uygulanan yöntemlerin birçok gıda ürününün toplam prooksidan aktivitesinin hassas bir şekilde tayin edilebilmesi için kullanılabileceği görüldü.

References

  • [1] Halliwell, B., Aeschbach, R., Loliger, J., Aruoma, O.I., The characterization of antioxidants, Food and Chemical Toxicology, 33, 601‒617, 1995.
  • [2] Banerjee, A., Kunwar, A., Mishra, B., Priyadarsini, K.I., Concentration dependent antioxidant/pro‒oxidant activity of curcumin: Studies from AAPH induced hemolysis of RBCs, Chemico-Biological Interactions, 174, 134–139, 2008.
  • [3] Shacter, E., Protein Oxidative Damage, Methods in Enzymology, 319, 428‒436, 2000.
  • [4] Levine, R.L., Williams, J.A., Stadtman, E.P., Shacter, E., Carbonyl assays for determination of oxidatively modified proteins, Methods in Enzymology, 233, 346–357, 1994.
  • [5] Reznick, A.Z., Packer, L., Oxidative damage to proteins: Spectrophotometric method for carbonyl assay, Methods in Enzymology, 233, 357–363, 1994.
  • [6] Manning, K., Isolation of nucleic acids from plants by differential solvent precipitation, Analytical Biochemistry, 195, 45–50, 1991.
  • [7] Dalle‒Donne, I., Rossi, R., Giustarini, D., Milzani, A., Colombo, R., Protein carbonyl groups as biomarkers of oxidative stress, Clinica Chimica Acta, 329, 23–38, 2003.
  • [8] Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., Saenz, C., Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying, International Journal of Food Science and Technology, 45, 1386–1394, 2010.
  • [9] Mena, P., Calani, L., Dall’Asta, C., Galaverna, G., García-Viguera, C., Bruni, R., Crozier, A., Del Rio, D., Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn, Molecules, 17, 14821-14840, 2012.
  • [10] Hmid, I., Elothmani, D., Hanine, H., Oukabli, A., Mehinagic, E., Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco, Arabian Journal of Chemistry, 10, 2675–2684, 2017.
  • [11] Dragovic-Uzelac, V., Pospišil, J., Levaj, B., Delonga, K., The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity, Food Chemistry, 91(2), 373-383, 2005.
  • [12] Mokrani, A., Krisa, S., Cluzet, S., Da Costa, G., Temsamani, H., Renouf, E., Mérillon, J.-M., Madani, K., Mesnil, M., Monvoisin, A., Richard, T., Phenolic contents and bioactive potential of peach fruit extracts, Food Chemistry, 202, 212-220, 2016.
  • [13] Wang, Z., Barrow, C.J., Dunshea, F.R., Suleria, H.A.R., A comparative investigation on phenolic composition, characterization and antioxidant potentials of five different Australian grown pear varieties, Antioxidants, 10(2), 151, 2021.
  • [14] Tang, K.S., Konczak, I., Zhao, J., Identification and quantification of phenolics in Australian native mint (Mentha australis R. Br.), Food Chemistry, 192, 698-705, 2016.
  • [15] Bahadori, M.B., Zengin, G., Bahadori, S., Dinparast, L., Movahhedin, N., Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.), International Journal of Food Properties, 21(1), 183-193, 2018.
  • [16] Zielinski, A.A.F., Haminiuk, C.W.I., Beta, T., Multi-response optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC–DAD–Q-TOF–MS/MS, LWT-Food Science and Technology, 65, 897-907, 2016.
  • [17] Tan, J., Engelhardt, U.H., Lin, Z., Kaiser, N., Maiwald, B., Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples, Journal of Food Composition and Analysis, 57, 8-15, 2017.
  • [18] Stănilă, A., Diaconeasa, Z., Roman, I., Sima, N., Măniuţ¬iu, D., Roman, A., Sima R., Extraction and characterization of phenolic compounds from rose hip (Rosa canina L.) using liquid chromatography coupled with electrospray ionization-mass spectrometry, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 349-354, 2015.
  • [19] Demir, N., Yildiz, O., Alpaslan, M., Hayaloglu, A.A., Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey, LWT-Food Science and Technology, 57(1), 126-133, 2014.
  • [20] Rietjens, I.M.C.M., Boersma, M.G., Haan, L., Spenkeiink, B., Awad, H.M., Cnubben, N.H.P., Zanden, J.J., Woude, H., Alnk, G.M., Koeman, J.H., The pro‒oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids, Environmental Toxicology and Pharmacology, 11, 321–333, 2002.
  • [21] Childs, A., Jacobs, C., Kaminski, T., Halliwell, B., Leeuwenburgh, C., Supplementation with vitamin C and N‒acetyl‒cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise, Free Radical Biology & Medicine, 31(6), 745–753, 2001.
  • [22] Hanif, S., Shamim, U., Ulah, M.F., Azmi, A.S., Bhat, S.H., Hadi, S.M., The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA, Toxicology, 249, 19–25, 2008.
  • [23] Kondakçı, E., Özyürek, M., Güçlü, K., Apak, R., Novel pro‒oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC method, Talanta, 115, 583–589, 2013.
  • [24] Akyüz, E., Sözgen Başkan, K., Tütem, E., Apak, R., Novel protein‒based solid‒biosensor for determining pro‒oxidant activity of phenolic compounds, Journal of Agricultural and Food Chemistry, 65(28), 5821–5830, 2017.
  • [25] Akyüz, E., Şen, F.B., Bener, M., Sözgen Başkan, K., Tütem, E., Apak, R., Protein‒protected gold nanocluster‒based biosensor for determining the prooxidant activity of natural antioxidant compounds, ACS Omega, 4(1), 2455–2462, 2019.
  • [26] Akyüz, E., Şen, F.B., Bener, M., Sözgen Başkan, K., Apak, R., A novel gold nanocluster–based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift, Talanta, 208, 1204252, 2020.
  • [27] Akyüz, E., Sözgen Başkan, K., Tütem, E., Apak, R., Novel iron(III)‒induced prooxidant activity measurement using a solid protein sensor in comparison with a copper(II)‒induced assay, Analytical Letters, 53(9), 1489‒1503, 2020.
  • [28] Akyüz, E., One‒pot green synthesized protein‒based silver nanocluster as prooxidant biosensor, Turkish Journal of Chemistry, 45, 1422-1431, 2021.
  • [29] Li, J., Zhu, J.‒J., Xu, K., Fluorescent metal nanoclusters: From synthesis to applications, Trends in Analytical Chemistry, 58, 90–98, 2014.
  • [30] Li, X.-J., Ling, J., Han, C.-L., Chen, L.-Q., Cao, Q.-E., Ding, Z.-T., Chicken egg white-stabilized Au nanoclusters for selective and sensitive detection of Hg(II), Analytical Sciences, 33, 671−675, 2017.
  • [31] Zhao, Q., Chen, S., Zhang, L., Huang, H., Zeng, Y., Liu, F., Multiplex sensor for detection of different metal ions based on on-off of fluorescent gold nanoclusters, Analytica Chimica Acta, 852, 236−243, 2014.
  • [32] Kong, Y., Chen, J., Gao, F., Brydson, R., Johnson, B., Heath, G., Zhang, Y., Wu, L., Zhou, D., Near-infrared fluorescent ribonuclease-a-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging, Nanoscale, 5, 1009−1017, 2013.
  • [33] Akyüz, E., “Determining total prooxidant activity of green tea and black tea using gold nanocluster biosensor” in Proceedings of the 5th International Academic Studies Conference, pp. 194-196, 2021.
  • [34] Zhang, X.-D., Wu, D., Shen, X., Liu, P.-X., Fan, F.-Y., Fan, S.-J., In vivo renal clearance, biodistribution, toxicity of gold nanoclusters, Biomaterials, 33, 4628−4638, 2012.
  • [35] Sánchez, A.C.G., Gil-Izquierdo, A., Gill, M.I., Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity, J Sci Food Agric, 83, 995–1003, 2003.
  • [36] Slezak, A., Moreira, H., Szyjka, A., Oszmianski, J., Gasiorowski, K., Conditions of prooxidant activity of cistus and pomegranate polyphenols in V79 cell cultures, Acta Poloniae Pharmaceutica, 74(2), 670-678, 2017.
  • [37] Girard-Lalancette, K., Pichette, A., Legault, J., Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices, Food Chemistry, 115, 720–726, 2009.
  • [38] Moldovan, B., Hosu, A., David, L., Cimpoiu, C., Total phenolics, total anthocyanins, antioxidant and pro-oxidant activity of some red fruits teas, Acta Chimica Slovenica, 63, 213–219, 2016.
  • [39] Wang, H., Provan, G.J., Helliwell, K., Tea flavonoids: their functions, utilisation and analysis, Trends in Food Science and Technology, 11, 152-160, 2000.

Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay

Year 2021, Volume: 11 Issue: 2, 474 - 486, 31.12.2021
https://doi.org/10.37094/adyujsci.947949

Abstract

Under oxidative stress conditions, which are defined as the deterioration of antioxidant and prooxidant balance in the organism in favor of prooxidants, ROS species that trigger the formation of various diseases occur. The fact that these harmful species cause oxidative damage to biological macromolecules is expressed as prooxidant activity. In this study, Cu(II)‒catalyzed prooxidant activities of pomegranate, apricot, peach, and pear juices and extracts of mint, white tea, and rosehip were measured by using gold nanoclusters synthesized via chicken egg white proteins. Fluorometric and spectrophotometric gold nanocluster biosensors and carbonyl assay were used. The fruit juices were used directly by diluting with pure water. Herbal plant samples were extracted in an ultrasonic water bath, filtered through microfilters, and stored in the refrigerator. Total prooxidant activities of fruit juices and herbal plants were calculated in terms of mM epicatechin equivalent, and the results obtained by applying all methods were compared with each other. It has been found that the applied methods can be used to accurately determine the total prooxidant activity of many food products.

References

  • [1] Halliwell, B., Aeschbach, R., Loliger, J., Aruoma, O.I., The characterization of antioxidants, Food and Chemical Toxicology, 33, 601‒617, 1995.
  • [2] Banerjee, A., Kunwar, A., Mishra, B., Priyadarsini, K.I., Concentration dependent antioxidant/pro‒oxidant activity of curcumin: Studies from AAPH induced hemolysis of RBCs, Chemico-Biological Interactions, 174, 134–139, 2008.
  • [3] Shacter, E., Protein Oxidative Damage, Methods in Enzymology, 319, 428‒436, 2000.
  • [4] Levine, R.L., Williams, J.A., Stadtman, E.P., Shacter, E., Carbonyl assays for determination of oxidatively modified proteins, Methods in Enzymology, 233, 346–357, 1994.
  • [5] Reznick, A.Z., Packer, L., Oxidative damage to proteins: Spectrophotometric method for carbonyl assay, Methods in Enzymology, 233, 357–363, 1994.
  • [6] Manning, K., Isolation of nucleic acids from plants by differential solvent precipitation, Analytical Biochemistry, 195, 45–50, 1991.
  • [7] Dalle‒Donne, I., Rossi, R., Giustarini, D., Milzani, A., Colombo, R., Protein carbonyl groups as biomarkers of oxidative stress, Clinica Chimica Acta, 329, 23–38, 2003.
  • [8] Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., Saenz, C., Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying, International Journal of Food Science and Technology, 45, 1386–1394, 2010.
  • [9] Mena, P., Calani, L., Dall’Asta, C., Galaverna, G., García-Viguera, C., Bruni, R., Crozier, A., Del Rio, D., Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn, Molecules, 17, 14821-14840, 2012.
  • [10] Hmid, I., Elothmani, D., Hanine, H., Oukabli, A., Mehinagic, E., Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco, Arabian Journal of Chemistry, 10, 2675–2684, 2017.
  • [11] Dragovic-Uzelac, V., Pospišil, J., Levaj, B., Delonga, K., The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity, Food Chemistry, 91(2), 373-383, 2005.
  • [12] Mokrani, A., Krisa, S., Cluzet, S., Da Costa, G., Temsamani, H., Renouf, E., Mérillon, J.-M., Madani, K., Mesnil, M., Monvoisin, A., Richard, T., Phenolic contents and bioactive potential of peach fruit extracts, Food Chemistry, 202, 212-220, 2016.
  • [13] Wang, Z., Barrow, C.J., Dunshea, F.R., Suleria, H.A.R., A comparative investigation on phenolic composition, characterization and antioxidant potentials of five different Australian grown pear varieties, Antioxidants, 10(2), 151, 2021.
  • [14] Tang, K.S., Konczak, I., Zhao, J., Identification and quantification of phenolics in Australian native mint (Mentha australis R. Br.), Food Chemistry, 192, 698-705, 2016.
  • [15] Bahadori, M.B., Zengin, G., Bahadori, S., Dinparast, L., Movahhedin, N., Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.), International Journal of Food Properties, 21(1), 183-193, 2018.
  • [16] Zielinski, A.A.F., Haminiuk, C.W.I., Beta, T., Multi-response optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC–DAD–Q-TOF–MS/MS, LWT-Food Science and Technology, 65, 897-907, 2016.
  • [17] Tan, J., Engelhardt, U.H., Lin, Z., Kaiser, N., Maiwald, B., Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples, Journal of Food Composition and Analysis, 57, 8-15, 2017.
  • [18] Stănilă, A., Diaconeasa, Z., Roman, I., Sima, N., Măniuţ¬iu, D., Roman, A., Sima R., Extraction and characterization of phenolic compounds from rose hip (Rosa canina L.) using liquid chromatography coupled with electrospray ionization-mass spectrometry, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 349-354, 2015.
  • [19] Demir, N., Yildiz, O., Alpaslan, M., Hayaloglu, A.A., Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey, LWT-Food Science and Technology, 57(1), 126-133, 2014.
  • [20] Rietjens, I.M.C.M., Boersma, M.G., Haan, L., Spenkeiink, B., Awad, H.M., Cnubben, N.H.P., Zanden, J.J., Woude, H., Alnk, G.M., Koeman, J.H., The pro‒oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids, Environmental Toxicology and Pharmacology, 11, 321–333, 2002.
  • [21] Childs, A., Jacobs, C., Kaminski, T., Halliwell, B., Leeuwenburgh, C., Supplementation with vitamin C and N‒acetyl‒cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise, Free Radical Biology & Medicine, 31(6), 745–753, 2001.
  • [22] Hanif, S., Shamim, U., Ulah, M.F., Azmi, A.S., Bhat, S.H., Hadi, S.M., The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA, Toxicology, 249, 19–25, 2008.
  • [23] Kondakçı, E., Özyürek, M., Güçlü, K., Apak, R., Novel pro‒oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC method, Talanta, 115, 583–589, 2013.
  • [24] Akyüz, E., Sözgen Başkan, K., Tütem, E., Apak, R., Novel protein‒based solid‒biosensor for determining pro‒oxidant activity of phenolic compounds, Journal of Agricultural and Food Chemistry, 65(28), 5821–5830, 2017.
  • [25] Akyüz, E., Şen, F.B., Bener, M., Sözgen Başkan, K., Tütem, E., Apak, R., Protein‒protected gold nanocluster‒based biosensor for determining the prooxidant activity of natural antioxidant compounds, ACS Omega, 4(1), 2455–2462, 2019.
  • [26] Akyüz, E., Şen, F.B., Bener, M., Sözgen Başkan, K., Apak, R., A novel gold nanocluster–based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift, Talanta, 208, 1204252, 2020.
  • [27] Akyüz, E., Sözgen Başkan, K., Tütem, E., Apak, R., Novel iron(III)‒induced prooxidant activity measurement using a solid protein sensor in comparison with a copper(II)‒induced assay, Analytical Letters, 53(9), 1489‒1503, 2020.
  • [28] Akyüz, E., One‒pot green synthesized protein‒based silver nanocluster as prooxidant biosensor, Turkish Journal of Chemistry, 45, 1422-1431, 2021.
  • [29] Li, J., Zhu, J.‒J., Xu, K., Fluorescent metal nanoclusters: From synthesis to applications, Trends in Analytical Chemistry, 58, 90–98, 2014.
  • [30] Li, X.-J., Ling, J., Han, C.-L., Chen, L.-Q., Cao, Q.-E., Ding, Z.-T., Chicken egg white-stabilized Au nanoclusters for selective and sensitive detection of Hg(II), Analytical Sciences, 33, 671−675, 2017.
  • [31] Zhao, Q., Chen, S., Zhang, L., Huang, H., Zeng, Y., Liu, F., Multiplex sensor for detection of different metal ions based on on-off of fluorescent gold nanoclusters, Analytica Chimica Acta, 852, 236−243, 2014.
  • [32] Kong, Y., Chen, J., Gao, F., Brydson, R., Johnson, B., Heath, G., Zhang, Y., Wu, L., Zhou, D., Near-infrared fluorescent ribonuclease-a-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging, Nanoscale, 5, 1009−1017, 2013.
  • [33] Akyüz, E., “Determining total prooxidant activity of green tea and black tea using gold nanocluster biosensor” in Proceedings of the 5th International Academic Studies Conference, pp. 194-196, 2021.
  • [34] Zhang, X.-D., Wu, D., Shen, X., Liu, P.-X., Fan, F.-Y., Fan, S.-J., In vivo renal clearance, biodistribution, toxicity of gold nanoclusters, Biomaterials, 33, 4628−4638, 2012.
  • [35] Sánchez, A.C.G., Gil-Izquierdo, A., Gill, M.I., Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity, J Sci Food Agric, 83, 995–1003, 2003.
  • [36] Slezak, A., Moreira, H., Szyjka, A., Oszmianski, J., Gasiorowski, K., Conditions of prooxidant activity of cistus and pomegranate polyphenols in V79 cell cultures, Acta Poloniae Pharmaceutica, 74(2), 670-678, 2017.
  • [37] Girard-Lalancette, K., Pichette, A., Legault, J., Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices, Food Chemistry, 115, 720–726, 2009.
  • [38] Moldovan, B., Hosu, A., David, L., Cimpoiu, C., Total phenolics, total anthocyanins, antioxidant and pro-oxidant activity of some red fruits teas, Acta Chimica Slovenica, 63, 213–219, 2016.
  • [39] Wang, H., Provan, G.J., Helliwell, K., Tea flavonoids: their functions, utilisation and analysis, Trends in Food Science and Technology, 11, 152-160, 2000.
There are 39 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry, Chemical Engineering
Journal Section Chemistry
Authors

Esin Akyüz 0000-0002-3473-8180

Publication Date December 31, 2021
Submission Date June 4, 2021
Acceptance Date December 6, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Akyüz, E. (2021). Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay. Adıyaman University Journal of Science, 11(2), 474-486. https://doi.org/10.37094/adyujsci.947949
AMA Akyüz E. Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay. ADYU J SCI. December 2021;11(2):474-486. doi:10.37094/adyujsci.947949
Chicago Akyüz, Esin. “Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay”. Adıyaman University Journal of Science 11, no. 2 (December 2021): 474-86. https://doi.org/10.37094/adyujsci.947949.
EndNote Akyüz E (December 1, 2021) Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay. Adıyaman University Journal of Science 11 2 474–486.
IEEE E. Akyüz, “Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay”, ADYU J SCI, vol. 11, no. 2, pp. 474–486, 2021, doi: 10.37094/adyujsci.947949.
ISNAD Akyüz, Esin. “Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay”. Adıyaman University Journal of Science 11/2 (December 2021), 474-486. https://doi.org/10.37094/adyujsci.947949.
JAMA Akyüz E. Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay. ADYU J SCI. 2021;11:474–486.
MLA Akyüz, Esin. “Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay”. Adıyaman University Journal of Science, vol. 11, no. 2, 2021, pp. 474-86, doi:10.37094/adyujsci.947949.
Vancouver Akyüz E. Comparison of Prooxidant Activities of Various Fruit Juices and Herbs via Gold Nanocluster Biosensors and Carbonyl Assay. ADYU J SCI. 2021;11(2):474-86.

...