The Sintering Temperature Effect on Magnetocaloric Effect in La2MnNiO6 Double Perovskite Manganite Material
Year 2023,
Volume: 13 Issue: 1&2, 28 - 42, 31.12.2023
İbrahim Barış Sever
,
Arda Kandemir
,
Ali Osman Ayaş
,
Ahmet Ekicibil
Abstract
La2NiMnO6 double-perovskite manganite samples were produced with sol-gel method to investigate structural, morphological, magnetic and magnetocaloric properties. They were sintered at 1000 and 1100 ̊C for LNM-1000 and LNM-1100 sample, respectively. The crystal structure of the samples was determined as Rhombohedral with R3𝑐 space group. Morphological analyses revealed that LNM-1000 sample included different polygonal shaped grains with small magnitudes, while grain boundaries became unclear for the LNM-1100 sample. The Curie temperatures were determined as 200 and 220 K while effective magnetic moment values were calculated as 1.75 and 2.13 for LNM-1000 and LNM-1100 samples, respectively. Arrot plots showed that samples exhibited second order magnetic phase transition. Maximum magnetic entropy change and relative cooling power values were calculated as 0.21, 0.25 J kg-1 K-1 and 46.2, 50.5 J kg-1 for LNM-1000 and LNM-1100 samples, respectively. Although the samples have the Curie temperature around sub-room temperature range that is much higher than Gd2NiMnO6 (5 K) and they have second order magnetic phase transition, relatively low value of magnetic entropy change values of these samples limits their usage as a magnetic coolant material.
Supporting Institution
Adıyaman Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimi
Project Number
FEFYL/2021-0004.
Thanks
This work is supported by the Research Project Unit of the Adıyaman University Under Grant Contract no FEFYL/2021-0004.
References
- Ayaş, A.O., Kılıç Çetin, S., Akça, G., Akyol, M., Ekicibil, A., Magnetic refrigeration: Current Progress in Magnetocaloric Properties of Perovskite Manganite Materials, Materials Today Communications, 35, 105988, 2023.
- Gross, R., Leach, M., Bauen, A., Progress in Renewable Energy, Environment International, 29,105-122, 2003.
- Tassou, S.A., Ge, Y., Hadawey, A., Marriott, D., Energy Consumption and Conservation in Food Retailing, Applied Thermal Engineering, 31, 147-156, 2011.
- Gschneidner Jr, K.A., Pecharsky, V.K., Pecharsky, A.O., Zimm, C.B., Recent Developments in Magnetic Refrigeration, Materials Science Forum, 315-317, 69-76, 1999.
- Ayaş, A.O., Akyol, M., Ekicibil, A., Structural and Magnetic Properties with Large Reversible Magnetocaloric Effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) Compounds, Philosophical Magazine, 96, 922-937, 2016.
- Gschneidner Jr, K.A., Pecharsky, V.K., Tsokol, A.O., Recent Developments in Magnetocaloric Materials, Reports on Progress in Physics, 68, 1479, 2005.
- Phan, M.-H., Yu, S.-C., Review of The Magnetocaloric Effect in Manganite Materials, Journal of Magnetism and Magnetic Materials, 308, 325-340, 2007.
- Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Advanced Materials, 23, 821-842, 2011.
- Gschneidner Jr, K.A, Pecharsky, V.K., Magnetocaloric Materials, Annual Review of Materials Science, 30, 387-429, 2000.
- Zhang, Y., Tian, Y., Zhang, Z., Jia, Y., Zhang, B., Jiang, M., Wang, J., Ren, Z., Magnetic Properties and Giant Cryogenic Magnetocaloric Effect in B-Site Ordered Antiferromagnetic Gd2MgTiO6 Double Perovskite Oxide, Acta Materialia, 226, 117669, 2022.
- Ram, N.R., Prakash, M., Naresh, U., Kumar, N.S., Sarmash, T.S., Subbarao, T., Kumar, R.J., Kumar, G.R., Naidu, K.C.B., Review on Magnetocaloric Effect and Materials, Journal of Superconductivity and Novel Magnetism, 31,1971-1979, 2018.
- Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., Conde, A., Magnetocaloric Effect: From Materials Research to Refrigeration Devices, Progress in Materials Science, 93, 112-232, 2018.
- Lyubina, J., Magnetocaloric Materials for Energy Efficient Cooling, Journal of Physics D: Applied Physics, 50, 53002-53002, 2017.
- Pecharsky, V.K., Gschneidner Jr, K.A., Giant Magnetocaloric Effect in Gd5(Si2Ge2), Physical Review Letters, 78, 4494-4497, 1997.
- Ayaş, A.O., Kandemir, A., Kılıç Çetin, S., Akça, G., Akyol, M., Ekicibil, A., Investigation of The Effect of Sintering Temperature on Structural, Magnetic and Magnetocaloric Properties in PrCaMn2O6 Double Perovskite Manganite System, Journal of Materials Science: Materials in Electronics, 33, 7357-7370, 2022.
- Kılıç Çetin, S., Akça, G., Ayaş, A.O., Akyol, M., Ekicibil, A., Structural, Magnetic, and Magnetocaloric Properties of Pb-Substituted La0.7(Te1-xPbx)0.3MnO3 (0.0 ≤ x ≤ 0.3) Manganites, Journal of Superconductivity and Novel Magnetism, 33, 527-538, 2020.
- Ayaş, A.O., Kılıç Çetin, S., Akyol, M., Akça, G., Ekicibil, A., Effect of B Site Partial Ru Substitution on Structural Magnetic and Magnetocaloric Properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) Perovskite System, Journal of Molecular Structure, 1200, 127120-127120, 2020.
- Kanıkırmızı, T., İzgi, T., Bayri, N., Gencer, H., Kolat, V.S., Pektas, M., Atalay, S., Structural, Magnetic and Magnetocaloric Properties of Ru Doped Pr0.67Ca0.33Mn1-xRuxO3 Manganites, Journal of Materials Science: Materials in Electronics, 33, 21778-21795, 2022.
- Kılıç Çetin, S., Akça, G., Aslan, M.S., Ekicibil, A., Role of Nickel Doping on Magnetocaloric Properties of La0.7Sr0.3 Mn1-xNixO3 Manganites, Journal of Materials Science: Materials in Electronics, 32, 10458-10472, 2021.
- Privitera, A., Righetto, M., Cacialli, F., Riede, M.K., Perspectives of Organic and Perovskite-Based Spintronics, Advanced Optical Materials, 9, 2100215, 2021.
- Balcells, L., Carrillo, A.E., Martı́nez, B., Sandiumenge, F., Fontcuberta, J., Room Temperature Magnetoresistive Sensor Based on Thick Films Manganese Perovskite, Journal of Magnetism and Magnetic Materials, 221, 224-230, 2000.
- Balcells, L., Fontcuberta, J., Martı́nez, B., Obradors, X., High-Field Magnetoresistance at Interfaces in Manganese Perovskites, Physical Review B, 58, R14697- R14700, 1998.
Year 2023,
Volume: 13 Issue: 1&2, 28 - 42, 31.12.2023
İbrahim Barış Sever
,
Arda Kandemir
,
Ali Osman Ayaş
,
Ahmet Ekicibil
Abstract
La2NiMnO6 çift peroksit manganit örnekleri yapısal, morfolojik, manyetik ve manyetokalorik özelliklerini araştırmak için sol-jel yöntemi ile üretildi. LNM-1000 ve LNM- 1100 numuneleri sırasıyla 1000 ve 1100 ̊C'de sinterlenmişlerdir. Numunelerin kristal yapısı R3c uzay grubuna sahip Rhombohedral olarak belirlenmiştir. Morfolojik analizler, LNM-1000 numunesinin küçük boyutlara sahip farklı poligonal şekilli taneler içerdiğini, LNM-1100 numunesinde ise tane sınırlarının belirsizleştiğini ortaya koymuştur. Curie sıcaklıkları 200 ve 220 K olarak belirlenirken, etkin manyetik moment değerleri LNM-1000 ve LNM-1100 numuneleri için sırasıyla 1.75 ve 2.13 olarak hesaplanmıştır. Arrot grafikleri örneklerin ikinci dereceden manyetik faz geçişi sergilediğini göstermiştir. Maksimum manyetik entropi değişimi ve bağıl soğutma gücü değerleri LNM-1000 ve LNM-1100 numuneleri için sırasıyla 0.21, 0.25 J kg-1 K-1 ve 46.2, 50.5 J kg-1 olarak hesaplanmıştır. Örneklerin Curie sıcaklığının oda sıcaklığının altında Gd2NiMnO6'dan (5 K) çok daha yüksek olması ve ikinci dereceden manyetik faz geçişine sahip olması gibi avantajlarına rağmen, bu örneklerin manyetik entropi değişim değerlerinin nispeten düşük olması manyetik soğutucu malzeme olarak kullanımlarını sınırlamaktadır.
Project Number
FEFYL/2021-0004.
References
- Ayaş, A.O., Kılıç Çetin, S., Akça, G., Akyol, M., Ekicibil, A., Magnetic refrigeration: Current Progress in Magnetocaloric Properties of Perovskite Manganite Materials, Materials Today Communications, 35, 105988, 2023.
- Gross, R., Leach, M., Bauen, A., Progress in Renewable Energy, Environment International, 29,105-122, 2003.
- Tassou, S.A., Ge, Y., Hadawey, A., Marriott, D., Energy Consumption and Conservation in Food Retailing, Applied Thermal Engineering, 31, 147-156, 2011.
- Gschneidner Jr, K.A., Pecharsky, V.K., Pecharsky, A.O., Zimm, C.B., Recent Developments in Magnetic Refrigeration, Materials Science Forum, 315-317, 69-76, 1999.
- Ayaş, A.O., Akyol, M., Ekicibil, A., Structural and Magnetic Properties with Large Reversible Magnetocaloric Effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) Compounds, Philosophical Magazine, 96, 922-937, 2016.
- Gschneidner Jr, K.A., Pecharsky, V.K., Tsokol, A.O., Recent Developments in Magnetocaloric Materials, Reports on Progress in Physics, 68, 1479, 2005.
- Phan, M.-H., Yu, S.-C., Review of The Magnetocaloric Effect in Manganite Materials, Journal of Magnetism and Magnetic Materials, 308, 325-340, 2007.
- Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Advanced Materials, 23, 821-842, 2011.
- Gschneidner Jr, K.A, Pecharsky, V.K., Magnetocaloric Materials, Annual Review of Materials Science, 30, 387-429, 2000.
- Zhang, Y., Tian, Y., Zhang, Z., Jia, Y., Zhang, B., Jiang, M., Wang, J., Ren, Z., Magnetic Properties and Giant Cryogenic Magnetocaloric Effect in B-Site Ordered Antiferromagnetic Gd2MgTiO6 Double Perovskite Oxide, Acta Materialia, 226, 117669, 2022.
- Ram, N.R., Prakash, M., Naresh, U., Kumar, N.S., Sarmash, T.S., Subbarao, T., Kumar, R.J., Kumar, G.R., Naidu, K.C.B., Review on Magnetocaloric Effect and Materials, Journal of Superconductivity and Novel Magnetism, 31,1971-1979, 2018.
- Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., Conde, A., Magnetocaloric Effect: From Materials Research to Refrigeration Devices, Progress in Materials Science, 93, 112-232, 2018.
- Lyubina, J., Magnetocaloric Materials for Energy Efficient Cooling, Journal of Physics D: Applied Physics, 50, 53002-53002, 2017.
- Pecharsky, V.K., Gschneidner Jr, K.A., Giant Magnetocaloric Effect in Gd5(Si2Ge2), Physical Review Letters, 78, 4494-4497, 1997.
- Ayaş, A.O., Kandemir, A., Kılıç Çetin, S., Akça, G., Akyol, M., Ekicibil, A., Investigation of The Effect of Sintering Temperature on Structural, Magnetic and Magnetocaloric Properties in PrCaMn2O6 Double Perovskite Manganite System, Journal of Materials Science: Materials in Electronics, 33, 7357-7370, 2022.
- Kılıç Çetin, S., Akça, G., Ayaş, A.O., Akyol, M., Ekicibil, A., Structural, Magnetic, and Magnetocaloric Properties of Pb-Substituted La0.7(Te1-xPbx)0.3MnO3 (0.0 ≤ x ≤ 0.3) Manganites, Journal of Superconductivity and Novel Magnetism, 33, 527-538, 2020.
- Ayaş, A.O., Kılıç Çetin, S., Akyol, M., Akça, G., Ekicibil, A., Effect of B Site Partial Ru Substitution on Structural Magnetic and Magnetocaloric Properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) Perovskite System, Journal of Molecular Structure, 1200, 127120-127120, 2020.
- Kanıkırmızı, T., İzgi, T., Bayri, N., Gencer, H., Kolat, V.S., Pektas, M., Atalay, S., Structural, Magnetic and Magnetocaloric Properties of Ru Doped Pr0.67Ca0.33Mn1-xRuxO3 Manganites, Journal of Materials Science: Materials in Electronics, 33, 21778-21795, 2022.
- Kılıç Çetin, S., Akça, G., Aslan, M.S., Ekicibil, A., Role of Nickel Doping on Magnetocaloric Properties of La0.7Sr0.3 Mn1-xNixO3 Manganites, Journal of Materials Science: Materials in Electronics, 32, 10458-10472, 2021.
- Privitera, A., Righetto, M., Cacialli, F., Riede, M.K., Perspectives of Organic and Perovskite-Based Spintronics, Advanced Optical Materials, 9, 2100215, 2021.
- Balcells, L., Carrillo, A.E., Martı́nez, B., Sandiumenge, F., Fontcuberta, J., Room Temperature Magnetoresistive Sensor Based on Thick Films Manganese Perovskite, Journal of Magnetism and Magnetic Materials, 221, 224-230, 2000.
- Balcells, L., Fontcuberta, J., Martı́nez, B., Obradors, X., High-Field Magnetoresistance at Interfaces in Manganese Perovskites, Physical Review B, 58, R14697- R14700, 1998.