Research Article
BibTex RIS Cite
Year 2024, Volume: 14 Issue: 2, 15 - 28, 31.12.2024
https://doi.org/10.37094/adyujsci.1568022

Abstract

References

  • [1] Bouché, N., Fromm, H., GABA in plants: Just a metabolite?, Trends in Plant Science, 9(3), 110-115, 2004
  • [2] Kinnersley, A. M., Turano, F. J., Gamma-aminobutyric acid (GABA) and plant responses to stress, Critical Reviews in Plant Sciences, 19(6), 479-509, 2000.
  • [3] Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A. R., Highway or byway: The metabolic role of the GABA shunt in plants, Trends in Plant Science, 13(1), 14-19, 2008.
  • [4] Shelp, B. J., Bown, A. W., Zarei, A., The GABA shunt in plants: A tale of many hats, Trends in Plant Science, 17(11), 540-548, 2012
  • [5] Baum, G., Lev-Yadun, S., Fridmann, Y., Arazi, T., Katsnelson, H., Fromm, H., Calmodulin binding to glutamate decarboxylase is required for its activation by calcium and its inhibition by autophosphorylation, The Journal of Biological Chemistry, 271(16), 9226-9231, 1996.
  • [6] Michaeli, S., Fromm, H., Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined?, Frontiers in Plant Science, 6, 419, 2015.
  • [7] Bown, A. W., Shelp, B. J., The metabolism and functions of gamma-aminobutyric acid, Plant Physiology, 115(1), 1-5, 1997
  • [8] Bown, A. W., Macgregor, K. B., Shelp, B. J., Gamma-aminobutyric acid (GABA) limits the accumulation of reactive oxygen intermediates in plant tissues, Plant Physiology, 141(3), 915-921, 2006.
  • [9] D'Mello, J. P. F. (Ed.), Amino acids in higher plants. CABI, 2015.
  • [10] Zik, M., Arazi, T., Snedden, W. A., Fromm, H., Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution, Plant molecular biology, 37, 967-975, 1998.
  • [11] Bouché, N., Fait, A., Zik, M., Fromm, H., The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis, Plant Molecular Biology, 55, 315-325, 2004.
  • [12] Turano, F. J., Fang, T. K., Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiology, 117(4), 1411-1421, 1998.
  • [13] Li, L., Dou, N., Zhang, H., Wu, C., The versatile GABA in plants. Plant Signaling & Behavior, 16(3), 1862565, 2021.
  • [14] Ramesh, S. A., Tyerman, S. D., Gilliham, M., Xu, B., γ-Aminobutyric acid (GABA) signalling in plants, Cellular and Molecular Life Sciences, 74, 1577-1603, 2017.
  • [15] Zarei, A., Chiu, G. Z., Yu, G., Trobacher, C. P., Shelp, B. J., Salinity-regulated expression of genes involved in GABA metabolism and signaling, Botany, 95(6), 621-627, 2017.
  • [16] Deng, X., Xu, X., Liu, Y., Zhang, Y., Yang, L., Zhang, S., Xu, J., Induction of γ‐aminobutyric acid plays a positive role in Arabidopsis resistance against Pseudomonas syringae, Journal of Integrative Plant Biology, 62(11), 1797-1812, 2020.
  • [17] Chao, J. T., Kong, Y. Z., Wang, Q., Sun, Y. H., Gong, D. P., Lv, J., Liu, G. S., MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan = Hereditas, 37(1), 91-97, 2015.
  • [18] Chao, J., Li, Z., Sun, Y., Aluko, O. O., Wu, X., Wang, Q., Liu, G., MG2C: A user-friendly online tool for drawing genetic maps, Molecular Horticulture, 1, 1-4, 2021.
  • [19] UniProt Consortium, T., UniProt: The universal protein knowledgebase, Nucleic Acids Research, 46(5), 2699-2699, 2018.
  • [20] Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., Nakai, K., WoLF PSORT: Protein localization predictor, Nucleic Acids Research, 35(suppl_2), W585-W587, 2007.
  • [21] Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., ... & Von Mering, C., The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, 51(D1), D638-D646, 2023.
  • [22] Tang, X., Zhang, N., Si, H., Calderón-Urrea, A., Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress, Plant Methods, 13, 1–8, 2017.
  • [23] Kabała, K., Janicka, M., Relationship between the GABA pathway and signaling of other regulatory molecules, International Journal of Molecular Sciences, 25(19), 10749, 2024.
  • [24] Guo, Z., Gong, J., Luo, S., Zuo, Y., Shen, Y. Role of gamma-aminobutyric acid in plant defense response, Metabolites, 13(6), 741, 2023.
  • [25] Seifikalhor, M., Aliniaeifard, S., Hassani, B., Niknam, V., Lastochkina, O., Diverse role of γ-aminobutyric acid in dynamic plant cell responses, Plant Cell Reports, 38, 847-867, 2019.
  • [26] Yuan, D., Wu, X., Gong, B., Huo, R., Zhao, L., Li, J., ... & Gao, H., GABA metabolism, transport and their roles and mechanisms in the regulation of abiotic stress resistance in plants, Metabolites, 13(3), 347, 2023.
  • [27] Dabravolski, S. A., Isayenkov, S. V., The role of the γ-aminobutyric acid (GABA) in plant salt stress tolerance, Horticulturae, 9(2), 230, 2023.
  • [28] Agrawal, S., Exploring genome triplication as a driver of plant diversification and adaptive evolution, International Journal of Statistics and Applied Mathematics, SP-8(6), 594-598, 2023.
  • [29] Imran, A., Ghosh, A., Evolutionary expansion, functional diversification, and transcript profiling of plant glutathione peroxidases, Plant Science, 111991, 2024.
  • [30] Van de Peer, Y., Mizrachi, E., Marchal, K., The evolutionary significance of polyploidy, Nature Reviews Genetics, 18(7), 411-424, 2017.
  • [31] Chakrabarty, S., Wang, S., Roychowdhury, T., Ginsberg, S. D., Chiosis, G., Introducing dysfunctional Protein-Protein Interactome (dfPPI)–A platform for systems-level protein-protein interaction (PPI) dysfunction investigation in disease, Current Opinion in Structural Biology, 88, 102886, 2024.
  • [32] Li, Z., Yu, J., Peng, Y., Huang, B., Metabolic pathways regulated by γ-aminobutyric acid contributing to drought tolerance in plants, Plant Cell Reports, 35(10), 2105-2116, 2016.

Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions

Year 2024, Volume: 14 Issue: 2, 15 - 28, 31.12.2024
https://doi.org/10.37094/adyujsci.1568022

Abstract

Gamma-aminobutyric acid (GABA) plays a critical role in plant stress responses and development by regulating osmotic balance, mitigating oxidative stress, and maintaining cellular homeostasis. Glutamate decarboxylase (GAD) is the first and key enzyme in the GABA biosynthesis pathway. In this study, three distinct GAD genes—StGAD1, StGAD2, and StGAD3—were identified, each distributed on separate chromosomes, indicating non-redundant functional roles. Expression profiling revealed that StGAD1 is the primary stress-responsive gene, with significant upregulation in both roots and leaves under drought stress, promoting GABA accumulation to enhance water-use efficiency and reduce oxidative damage. In contrast, StGAD2 showed limited involvement, maintaining basal GABA levels but displaying minimal stress-induced expression. Protein-protein interaction analysis highlights functional relationships among the GAD proteins, with StGAD1 and StGAD2 sharing significant homology. The findings suggest that GABA metabolism, primarily driven by StGAD1, plays a more prominent role in drought tolerance than salt stress adaptation, where other regulatory mechanisms such as ion homeostasis may be more critical. This study provides foundational insights into the molecular mechanisms of GAD-mediated stress responses in potatoes, offering potential avenues for enhancing crop resilience through targeted genetic strategies.

References

  • [1] Bouché, N., Fromm, H., GABA in plants: Just a metabolite?, Trends in Plant Science, 9(3), 110-115, 2004
  • [2] Kinnersley, A. M., Turano, F. J., Gamma-aminobutyric acid (GABA) and plant responses to stress, Critical Reviews in Plant Sciences, 19(6), 479-509, 2000.
  • [3] Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A. R., Highway or byway: The metabolic role of the GABA shunt in plants, Trends in Plant Science, 13(1), 14-19, 2008.
  • [4] Shelp, B. J., Bown, A. W., Zarei, A., The GABA shunt in plants: A tale of many hats, Trends in Plant Science, 17(11), 540-548, 2012
  • [5] Baum, G., Lev-Yadun, S., Fridmann, Y., Arazi, T., Katsnelson, H., Fromm, H., Calmodulin binding to glutamate decarboxylase is required for its activation by calcium and its inhibition by autophosphorylation, The Journal of Biological Chemistry, 271(16), 9226-9231, 1996.
  • [6] Michaeli, S., Fromm, H., Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined?, Frontiers in Plant Science, 6, 419, 2015.
  • [7] Bown, A. W., Shelp, B. J., The metabolism and functions of gamma-aminobutyric acid, Plant Physiology, 115(1), 1-5, 1997
  • [8] Bown, A. W., Macgregor, K. B., Shelp, B. J., Gamma-aminobutyric acid (GABA) limits the accumulation of reactive oxygen intermediates in plant tissues, Plant Physiology, 141(3), 915-921, 2006.
  • [9] D'Mello, J. P. F. (Ed.), Amino acids in higher plants. CABI, 2015.
  • [10] Zik, M., Arazi, T., Snedden, W. A., Fromm, H., Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution, Plant molecular biology, 37, 967-975, 1998.
  • [11] Bouché, N., Fait, A., Zik, M., Fromm, H., The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis, Plant Molecular Biology, 55, 315-325, 2004.
  • [12] Turano, F. J., Fang, T. K., Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiology, 117(4), 1411-1421, 1998.
  • [13] Li, L., Dou, N., Zhang, H., Wu, C., The versatile GABA in plants. Plant Signaling & Behavior, 16(3), 1862565, 2021.
  • [14] Ramesh, S. A., Tyerman, S. D., Gilliham, M., Xu, B., γ-Aminobutyric acid (GABA) signalling in plants, Cellular and Molecular Life Sciences, 74, 1577-1603, 2017.
  • [15] Zarei, A., Chiu, G. Z., Yu, G., Trobacher, C. P., Shelp, B. J., Salinity-regulated expression of genes involved in GABA metabolism and signaling, Botany, 95(6), 621-627, 2017.
  • [16] Deng, X., Xu, X., Liu, Y., Zhang, Y., Yang, L., Zhang, S., Xu, J., Induction of γ‐aminobutyric acid plays a positive role in Arabidopsis resistance against Pseudomonas syringae, Journal of Integrative Plant Biology, 62(11), 1797-1812, 2020.
  • [17] Chao, J. T., Kong, Y. Z., Wang, Q., Sun, Y. H., Gong, D. P., Lv, J., Liu, G. S., MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan = Hereditas, 37(1), 91-97, 2015.
  • [18] Chao, J., Li, Z., Sun, Y., Aluko, O. O., Wu, X., Wang, Q., Liu, G., MG2C: A user-friendly online tool for drawing genetic maps, Molecular Horticulture, 1, 1-4, 2021.
  • [19] UniProt Consortium, T., UniProt: The universal protein knowledgebase, Nucleic Acids Research, 46(5), 2699-2699, 2018.
  • [20] Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., Nakai, K., WoLF PSORT: Protein localization predictor, Nucleic Acids Research, 35(suppl_2), W585-W587, 2007.
  • [21] Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., ... & Von Mering, C., The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Research, 51(D1), D638-D646, 2023.
  • [22] Tang, X., Zhang, N., Si, H., Calderón-Urrea, A., Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress, Plant Methods, 13, 1–8, 2017.
  • [23] Kabała, K., Janicka, M., Relationship between the GABA pathway and signaling of other regulatory molecules, International Journal of Molecular Sciences, 25(19), 10749, 2024.
  • [24] Guo, Z., Gong, J., Luo, S., Zuo, Y., Shen, Y. Role of gamma-aminobutyric acid in plant defense response, Metabolites, 13(6), 741, 2023.
  • [25] Seifikalhor, M., Aliniaeifard, S., Hassani, B., Niknam, V., Lastochkina, O., Diverse role of γ-aminobutyric acid in dynamic plant cell responses, Plant Cell Reports, 38, 847-867, 2019.
  • [26] Yuan, D., Wu, X., Gong, B., Huo, R., Zhao, L., Li, J., ... & Gao, H., GABA metabolism, transport and their roles and mechanisms in the regulation of abiotic stress resistance in plants, Metabolites, 13(3), 347, 2023.
  • [27] Dabravolski, S. A., Isayenkov, S. V., The role of the γ-aminobutyric acid (GABA) in plant salt stress tolerance, Horticulturae, 9(2), 230, 2023.
  • [28] Agrawal, S., Exploring genome triplication as a driver of plant diversification and adaptive evolution, International Journal of Statistics and Applied Mathematics, SP-8(6), 594-598, 2023.
  • [29] Imran, A., Ghosh, A., Evolutionary expansion, functional diversification, and transcript profiling of plant glutathione peroxidases, Plant Science, 111991, 2024.
  • [30] Van de Peer, Y., Mizrachi, E., Marchal, K., The evolutionary significance of polyploidy, Nature Reviews Genetics, 18(7), 411-424, 2017.
  • [31] Chakrabarty, S., Wang, S., Roychowdhury, T., Ginsberg, S. D., Chiosis, G., Introducing dysfunctional Protein-Protein Interactome (dfPPI)–A platform for systems-level protein-protein interaction (PPI) dysfunction investigation in disease, Current Opinion in Structural Biology, 88, 102886, 2024.
  • [32] Li, Z., Yu, J., Peng, Y., Huang, B., Metabolic pathways regulated by γ-aminobutyric acid contributing to drought tolerance in plants, Plant Cell Reports, 35(10), 2105-2116, 2016.
There are 32 citations in total.

Details

Primary Language English
Subjects Plant Cell and Molecular Biology
Journal Section Biology
Authors

M. Aydin Akbudak 0000-0002-1397-4678

Publication Date December 31, 2024
Submission Date October 16, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Akbudak, M. A. (2024). Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions. Adıyaman University Journal of Science, 14(2), 15-28. https://doi.org/10.37094/adyujsci.1568022
AMA Akbudak MA. Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions. ADYU J SCI. December 2024;14(2):15-28. doi:10.37094/adyujsci.1568022
Chicago Akbudak, M. Aydin. “Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum Tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions”. Adıyaman University Journal of Science 14, no. 2 (December 2024): 15-28. https://doi.org/10.37094/adyujsci.1568022.
EndNote Akbudak MA (December 1, 2024) Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions. Adıyaman University Journal of Science 14 2 15–28.
IEEE M. A. Akbudak, “Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions”, ADYU J SCI, vol. 14, no. 2, pp. 15–28, 2024, doi: 10.37094/adyujsci.1568022.
ISNAD Akbudak, M. Aydin. “Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum Tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions”. Adıyaman University Journal of Science 14/2 (December 2024), 15-28. https://doi.org/10.37094/adyujsci.1568022.
JAMA Akbudak MA. Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions. ADYU J SCI. 2024;14:15–28.
MLA Akbudak, M. Aydin. “Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum Tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions”. Adıyaman University Journal of Science, vol. 14, no. 2, 2024, pp. 15-28, doi:10.37094/adyujsci.1568022.
Vancouver Akbudak MA. Identification and Functional Characterization of Glutamate Decarboxylase (GAD) Genes in Potato (Solanum tuberosum L.) and Analysis of Their Expression under Drought and Salt Stress Conditions. ADYU J SCI. 2024;14(2):15-28.

...