Research Article
BibTex RIS Cite

Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers

Year 2024, Volume: 14 Issue: 2, 140 - 156, 31.12.2024
https://doi.org/10.37094/adyujsci.1572289

Abstract

The interplay between applied mathematics and artificial intelligence is pivotal for advancing both fields. AI fundamentally relies on statistical and mathematical techniques to derive models from data, thus enabling computers to improve their performance over time. Classification of brain MRI images for tumor detection has improved significantly with the advent of machine learning and deep learning techniques. Classical classifiers such as Support Vector Machines (SVM), Tree, and k-Nearest Neighbors (k-NN) have been widely used in conjunction with feature extraction methods to improve the accuracy of tumor detection in MRI scans. Recent studies have shown that classical classifiers can effectively analyze features extracted from MRI images, which can lead to improved diagnostic capabilities. Feature extraction is a critical step in the classification process. Classification of brain MRI images using Vision Transformers (ViTs) represents a significant advancement in medical imaging and tumor detection. ViTs leverage the transformer architecture, which is highly successful in natural language processing, to effectively process visual data. This approach allows for capturing long-range dependencies within images and enhances the ability of the model to distinguish complex patterns associated with brain tumors. Recent studies have demonstrated the effectiveness of ViTs in various classification tasks, including medical imaging. In our study, the classification accuracy of the dataset from the ViTs network was 78.26%. In order to increase tumor detection performance, features of the ViTs network were extracted and given to classical classifiers, and 81.9% accuracy was achieved in Tree classifier. As a result, classification of brain MRI images using ViTs represents a new approach with the strengths of deep learning and traditional machine learning methods, namely feature extraction and classification in classical classifiers.

Ethical Statement

Ethical approval: The authors declare that they comply with ethical standards. Conflict of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript. Data availability: Since no datasets were collected or analyzed during this study, data sharing does not apply to this publication. There are no data associated with this manuscript. Any inquiries regarding data availability should be directed to the authors.

References

  • [1] Amin, J., Sharif, M., Haldorai, A., Yasmin, M., Nayak, R. S., Brain tumor detection and classification using machine learning: a comprehensive survey, Complex & intelligent systems, 8(4), 3161-3183, 2022.
  • [2] Ali, H., Biswas, M. R., Mohsen, F., Shah, U., Alamgir, A., Mousa, O., Shah, Z., The role of generative adversarial networks in brain MRI: a scoping review, Insights into imaging, 13(1), 98, 2022.
  • [3] Khan, A., Rauf, Z., Sohail, A., Khan, A. R., Asif, H., Asif, A., Farooq, U., A survey of the vision transformers and their CNN-transformer based variants, Artificial Intelligence Review, 56 (Suppl 3), 2917-2970, 2023.
  • [4] Elbedoui, K., Mzoughi, H., Slima, M. B., Deep Learning Approaches for Dermoscopic Image-Based Skin Cancer Diagnosis, In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP) 1, 1-7, 2024.
  • [5] Mejri, S., Oueslati, A. E., Dermoscopic Images Classification Using Pretrained VGG-16 and ResNet-50 Models, In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP) 1, 342-347, 2024.
  • [6] Hameed, M., Zameer, A., Raja, M. A. Z., A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset, CMES-Computer Modeling in Engineering & Sciences, 140(3), 2024
  • [7] Kumar, M. R., Priyanga, S., Anusha, J. S., Chatiyode, V., Santiago, J., Revathi, P., Synergistic Skin Cancer Classification: Vision Transformer alongside MobileNetV2, In 2023 4th International Conference on Intelligent Technologies (CONIT) 1-7, 2024.
  • [8] Karthik, A., Sahoo, S. K., Kumar, A., Patel, N., Chinnaraj, P., Maguluri, L. P., Rajaram, A., Unified approach for accurate brain tumor Multi-Classification and segmentation through fusion of advanced methodologies, Biomedical Signal Processing and Control, 100, 106872, 2025.
  • [9] Subba, A. B., Sunaniya, A. K., Computationally optimized brain tumor classification using attention based GoogLeNet-style CNN, Expert Systems with Applications, 125443, 2024.
  • [10] Sathya, R., TR, M., Bhatia Khan, S., Malibari, A. A., Asiri, F., Employing Xception Convolutional Neural Network through High-Precision MRI Analysis for Brain Tumor Diagnosis, Frontiers in Medicine, 11, 1487713, 2024.
  • [11] Mehmood, Y., Bajwa, U. I., Brain tumor grade classification using the ConvNext architecture, Digital Health, 10, 20552076241284920, 2024.
  • [12] Ali Al-Hamza, K., ViT-BT: Improving MRI Brain Tumor Classification Using Vision Transformer with Transfer Learning. Available at SSRN, http://dx.doi.org/10.2139/ssrn.4959261, 2024.
  • [13] Odusami, M., Damasevicius, R., Milieskaite‐Belousoviene, E., Maskeliunas, R., Multimodal Neuroimaging Fusion for Alzheimer's Disease: An Image Colorization Approach with Mobile Vision Transformer, International Journal of Imaging Systems and Technology, 34(5), e23158, 2024.
  • [14] https://www.kaggle.com/datasets/volodymyrpivoshenko/brain-mri-scan-images-tum or-detection, Last Accesed in 10.10.2024.
  • [15] https://www.mathworks.com/help/deeplearning/ug/train-vision-transformer-network-for-image -classification.html, Last Accessed in 10.10.2024.

Vision Transformers Kullanılarak Beyin MRI Görüntülerinin Sınıflandırılmasıyla Tümör Tespiti

Year 2024, Volume: 14 Issue: 2, 140 - 156, 31.12.2024
https://doi.org/10.37094/adyujsci.1572289

Abstract

Uygulamalı matematik ve yapay zeka arasındaki etkileşim, her iki alanın da ilerlemesi için çok önemlidir. Yapay zeka, verilerden modeller türetmek için temelde istatistiksel ve matematiksel tekniklere güvenir ve böylece bilgisayarların zamanla performanslarını iyileştirmelerini sağlar. Beyin MRI görüntülerinin tümör tespiti için sınıflandırılması, makine öğrenimi ve derin öğrenme tekniklerinin ortaya çıkmasıyla önemli ölçüde iyileşmiştir. Destek Vektör Makineleri (SVM), Ağaç ve k-En Yakın Komşular (k-NN) gibi klasik sınıflandırıcılar, MRI taramalarında tümör tespitinin doğruluğunu artırmak için özellik çıkarma yöntemleriyle birlikte yaygın olarak kullanılmıştır. Son çalışmalar, klasik sınıflandırıcıların MRI görüntülerinden çıkarılan özellikleri etkili bir şekilde analiz edebileceğini ve bunun da gelişmiş tanı yeteneklerine yol açabileceğini göstermiştir. Özellik çıkarma, sınıflandırma sürecinde kritik bir adımdır. Görme Dönüştürücüleri (ViT) kullanılarak beyin MRI görüntülerinin sınıflandırılması, tıbbi görüntüleme ve tümör tespitinde önemli bir ilerlemeyi temsil etmektedir. ViT, görsel verileri etkili bir şekilde işlemek için doğal dil işlemede oldukça başarılı olan dönüştürücü mimarisinden yararlanır. Bu yaklaşım, görüntüler içindeki uzun menzilli bağımlılıkları yakalamaya olanak tanır ve modelin beyin tümörleriyle ilişkili karmaşık örüntüleri ayırt etme yeteneğini artırır. Son çalışmalar, tıbbi görüntüleme dahil olmak üzere çeşitli sınıflandırma görevlerinde ViT'nin etkinliğini göstermiştir. Çalışmamızda, ViT ağından gelen veri setinin sınıflandırma doğruluğu %78,26 idi. Tümör tespit performansını artırmak için ViT ağının özellikleri çıkarılıp klasik sınıflandırıcılara verildi ve Ağaç sınıflandırıcısında %81,9 doğruluk elde edildi. Sonuç olarak, Görme Dönüştürücüleri kullanılarak beyin MRI görüntülerinin sınıflandırılması, klasik sınıflandırıcılarda özellik çıkarma ve sınıflandırma olmak üzere derin öğrenme ve geleneksel makine öğrenme yöntemlerinin güçlü yönlerine sahip yeni bir yaklaşımı temsil etmektedir.

Ethical Statement

Etik onay: Yazarlar etik standartlara uyduklarını beyan ederler. Çıkar Çatışması: Yazarlar, bu yazıda bildirilen çalışmayı etkileyebilecek bilinen rekabet eden finansal çıkarları veya kişisel ilişkileri olmadığını beyan ederler. Veri kullanılabilirliği: Bu çalışma sırasında hiçbir veri seti toplanmadığı veya analiz edilmediği için, veri paylaşımı bu yayın için geçerli değildir. Bu yazıyla ilişkili veri yoktur. Veri kullanılabilirliğiyle ilgili tüm sorular yazarlara yönlendirilmelidir.

References

  • [1] Amin, J., Sharif, M., Haldorai, A., Yasmin, M., Nayak, R. S., Brain tumor detection and classification using machine learning: a comprehensive survey, Complex & intelligent systems, 8(4), 3161-3183, 2022.
  • [2] Ali, H., Biswas, M. R., Mohsen, F., Shah, U., Alamgir, A., Mousa, O., Shah, Z., The role of generative adversarial networks in brain MRI: a scoping review, Insights into imaging, 13(1), 98, 2022.
  • [3] Khan, A., Rauf, Z., Sohail, A., Khan, A. R., Asif, H., Asif, A., Farooq, U., A survey of the vision transformers and their CNN-transformer based variants, Artificial Intelligence Review, 56 (Suppl 3), 2917-2970, 2023.
  • [4] Elbedoui, K., Mzoughi, H., Slima, M. B., Deep Learning Approaches for Dermoscopic Image-Based Skin Cancer Diagnosis, In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP) 1, 1-7, 2024.
  • [5] Mejri, S., Oueslati, A. E., Dermoscopic Images Classification Using Pretrained VGG-16 and ResNet-50 Models, In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP) 1, 342-347, 2024.
  • [6] Hameed, M., Zameer, A., Raja, M. A. Z., A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset, CMES-Computer Modeling in Engineering & Sciences, 140(3), 2024
  • [7] Kumar, M. R., Priyanga, S., Anusha, J. S., Chatiyode, V., Santiago, J., Revathi, P., Synergistic Skin Cancer Classification: Vision Transformer alongside MobileNetV2, In 2023 4th International Conference on Intelligent Technologies (CONIT) 1-7, 2024.
  • [8] Karthik, A., Sahoo, S. K., Kumar, A., Patel, N., Chinnaraj, P., Maguluri, L. P., Rajaram, A., Unified approach for accurate brain tumor Multi-Classification and segmentation through fusion of advanced methodologies, Biomedical Signal Processing and Control, 100, 106872, 2025.
  • [9] Subba, A. B., Sunaniya, A. K., Computationally optimized brain tumor classification using attention based GoogLeNet-style CNN, Expert Systems with Applications, 125443, 2024.
  • [10] Sathya, R., TR, M., Bhatia Khan, S., Malibari, A. A., Asiri, F., Employing Xception Convolutional Neural Network through High-Precision MRI Analysis for Brain Tumor Diagnosis, Frontiers in Medicine, 11, 1487713, 2024.
  • [11] Mehmood, Y., Bajwa, U. I., Brain tumor grade classification using the ConvNext architecture, Digital Health, 10, 20552076241284920, 2024.
  • [12] Ali Al-Hamza, K., ViT-BT: Improving MRI Brain Tumor Classification Using Vision Transformer with Transfer Learning. Available at SSRN, http://dx.doi.org/10.2139/ssrn.4959261, 2024.
  • [13] Odusami, M., Damasevicius, R., Milieskaite‐Belousoviene, E., Maskeliunas, R., Multimodal Neuroimaging Fusion for Alzheimer's Disease: An Image Colorization Approach with Mobile Vision Transformer, International Journal of Imaging Systems and Technology, 34(5), e23158, 2024.
  • [14] https://www.kaggle.com/datasets/volodymyrpivoshenko/brain-mri-scan-images-tum or-detection, Last Accesed in 10.10.2024.
  • [15] https://www.mathworks.com/help/deeplearning/ug/train-vision-transformer-network-for-image -classification.html, Last Accessed in 10.10.2024.
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Mathematics
Authors

Uğur Demiroğlu 0000-0002-0000-8411

Publication Date December 31, 2024
Submission Date October 23, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Demiroğlu, U. (2024). Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers. Adıyaman University Journal of Science, 14(2), 140-156. https://doi.org/10.37094/adyujsci.1572289
AMA Demiroğlu U. Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers. ADYU J SCI. December 2024;14(2):140-156. doi:10.37094/adyujsci.1572289
Chicago Demiroğlu, Uğur. “Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers”. Adıyaman University Journal of Science 14, no. 2 (December 2024): 140-56. https://doi.org/10.37094/adyujsci.1572289.
EndNote Demiroğlu U (December 1, 2024) Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers. Adıyaman University Journal of Science 14 2 140–156.
IEEE U. Demiroğlu, “Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers”, ADYU J SCI, vol. 14, no. 2, pp. 140–156, 2024, doi: 10.37094/adyujsci.1572289.
ISNAD Demiroğlu, Uğur. “Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers”. Adıyaman University Journal of Science 14/2 (December 2024), 140-156. https://doi.org/10.37094/adyujsci.1572289.
JAMA Demiroğlu U. Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers. ADYU J SCI. 2024;14:140–156.
MLA Demiroğlu, Uğur. “Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers”. Adıyaman University Journal of Science, vol. 14, no. 2, 2024, pp. 140-56, doi:10.37094/adyujsci.1572289.
Vancouver Demiroğlu U. Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers. ADYU J SCI. 2024;14(2):140-56.

...