Research Article
BibTex RIS Cite

DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds

Year 2024, Volume: 14 Issue: 2, 29 - 49, 31.12.2024
https://doi.org/10.37094/adyujsci.1572580

Abstract

Coumarins and their derivatives, which are secondary metobalites of many plants, are heterocyclic bioactive compounds with various biological properties. Due to these properties, the synthesis of various derivatives and the investigation of their properties are of great interest. 4-(chloromethyl)-7-hydroxy-5-methyl coumarin (1), 4-(chloromethyl)-7-hydroxy-8-methyl coumarin (2), and 4-(chloromethyl)-7-hydroxy coumarin (3) synthesized by Pechmann condensation reaction and characterized by FT-IR, NMR spectral data and elemental analysis data. The antioxidant capacities of the compounds were investigated by difhenyl-2-picrylhydrazyl (DPPH) radical scavenger assay using the UV-Vis spectrophotometric method. The interactions of the compounds with ROS-producing cytochrome P-450, xanthine oxidase, lipooxygenase, monoamine oxidase, and nicotinamide adenine dinucleotide phosphate oxidase enzymes were investigated by molecular docking. All compounds interacted well in the active binding site of most of the enzymes (about 6-8 kcal/mol). The pharmacokinetic and toxicokinetic properties of the compounds, indicating their potential as drug candidates, were analyzed by ADMET predictions. All the results obtained showed that the compounds have properties that could be drug candidates.

References

  • [1] Kecel-Gunduz, S., Budama-Kilinc, Y., Bicak, B., Gok, B., Belmen, B., Aydogan, F., Yolacan, C., New coumarin derivative with potential antioxidant activity: Synthesis, DNA binding and in silico studies (Docking, MD, ADMET), Arabian Journal of Chemistry, 16(2), 104440, 2023.
  • [2] Özdemir, M., Taşkın, D., Ceyhan, D., Köksoy, B., Taşkın, T., Bulut, M., Yalçın, B., 7, 8-Dihydroxycoumarin derivatives: In silico molecular docking and in vitro anticholinesterase activity, Journal of Molecular Structure, 1274, 134535, 2023.
  • [3] Hadjipavlou-Litina, D., Kontogiorgis, C., Pontiki, E., Dakanali, M., Akoumianaki, A., Katerinopoulos, H. E., Anti-inflammatory and antioxidant activity of coumarins designed as potential fluorescent zinc sensors, Journal of Enzyme Inhibition and Medicinal Chemistry, 22(3), 287-292, 2007.
  • [4] Kostova, I., Synthetic and natural coumarins as cytotoxic agents, Current Medicinal Chemistry-Anti-Cancer Agents, 5(1), 29-46, 2005.
  • [5] Wu, Y., Xu, J., Liu, Y., Zeng, Y., Wu, G., A review on anti-tumor mechanisms of coumarins, Frontiers in Oncology, 10, 592853, 2020.
  • [6] Thakur, A., Singla, R., Jaitak, V., Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies, European Journal of Medicinal Chemistry, 101, 476-495, 2015.
  • [7] Chandra, K. M., Goud, N. S., Arifuddin, M., Alvala, M., Alvala, R., Angeli, A., Supuran, C. T., Synthesis and biological evaluation of novel 4, 7-disubstituted coumarins as selective tumor-associated carbonic anhydrase IX and XII inhibitors, Bioorganic & Medicinal Chemistry Letters, 39, 127877, 2021.
  • [8] Ostrowska, K., Coumarin-piperazine derivatives as biologically active compounds, Saudi Pharmaceutical Journal, 28(2), 220-232, 2020.
  • [9] Batran, R. Z., Kassem, A. F., Abbas, E. M., Elseginy, S. A., Mounier, M. M., Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells, Bioorganic & Medicinal Chemistry, 26(12), 3474-3490, 2018.
  • [10] Çelik, E., Özdemir, M., Yalçın, B., Koksoy, B., In silico study and structure-activity relations of glucose-bound coumarin derivatives against the NSP12 protein of SARS-CoV-2, Journal of Ata-Chem, 1(1), 29-37, 2021.
  • [11] Sabt, A., Abdelhafez, O. M., El-Haggar, R. S., Madkour, H. M., Eldehna, W. M., El-Khrisy, E. E. D. A., ... & Rashed, L. A., Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies, Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1095-1107, 2018.
  • [12] Klenkar, J., Molnar, M., Natural and synthetic coumarins as potential anticancer agents, Journal of Chemical And Pharmaceutical Research, 7(7), 1223-1238, 2015
  • [13] Holiyachi, M., Shastri, S. L., Chougala, B. M., Naik, N. S., Pawar, V., Shastri, L. A., ... & Sunagar, V. A., Design and synthesis of new series of dipyrromethane-coumarin and porphyrin-coumarin derivatives: Excellent anticancer agents, Journal of Molecular Structure, 1237, 130424, 2021.
  • [14] Kecel-Gunduz, S., Budama-Kilinc, Y., Gok, B., Bicak, B., Akman, G., Arvas, B., ... & Yolacan, C., Computer-aided anticancer drug design: In vitro and in silico studies of new iminocoumarin derivative, Journal of Molecular Structure, 1239, 130539, 2021.
  • [15] Song, X. F., Fan, J., Liu, L., Liu, X. F., Gao, F., Coumarin derivatives with anticancer activities: An update, Archiv der Pharmazie, 353(8), 2000025, 2020.
  • [16] Dorababu, A., Coumarin-heterocycle framework: A privileged approach in promising anticancer drug design, European Journal of Medicinal Chemistry Reports, 2, 100006, 2021.
  • [17] Souiei, S., Garah, F. B. E., Belkacem, M. A., Znati, M., Bouajila, J., Jannet, H. B., New flavonoid glycosides conjugates: synthesis, characterization, and evaluation of their cytotoxic activities, Turkish Journal of Chemistry, 43(2), 404-414, 2019.
  • [18] Costa, J. D. S., Ramos, R. D. S., Costa, K. D. S. L., Brasil, D. D. S. B., Silva, C. H. T. D. P. D., Ferreira, E. F. B., ... & Santos, C. B. R. D., An in silico study of the antioxidant ability for two caffeine analogs using molecular docking and quantum chemical methods, Molecules, 23(11), 2801, 2018.
  • [19] Sarı, S., Kılıç, N., Yılmaz, M., In vitro antioxidant activities and in silico molecular docking studies of N-substituted oxime derivatives, Structural Chemistry, 34(2), 605-616, 2023.
  • [20] Ye, X. W., Zheng, Y. C., Duan, Y. C., Wang, M. M., Yu, B., Ren, J. L., ... & Liu, H. M., Synthesis and biological evaluation of coumarin–1, 2, 3-triazole–dithiocarbamate hybrids as potent LSD1 inhibitors, Medicinal Chemistry Communications, 5(5), 650-654, 2014.
  • [21] Reddy, Y. T., Sonar, V. N., Crooks, P. A., Dasari, P. K., Reddy, P. N., Rajitha, B., Ceric ammonium nitrate (CAN): An efficient catalyst for the coumarin synthesis via Pechmann condensation using conventional heating and microwave irradiation. Synthetic Communications, 38(13), 2082-2088, 2008.
  • [22] Jawalekar, A. M., Meeuwenoord, N., Cremers, J. S. G., Overkleeft, H. S., van der Marel, G. A., Rutjes, F. P., Van Delft, F. L., Conjugation of nucleosides and oligonucleotides by [3+ 2] cycloaddition, The Journal of organic chemistry, 73(1), 287-290, 2008.
  • [23] Uroos, M., Javaid, A., Bashir, A., Tariq, J., Khan, I. H., Naz, S., ... & Sultan, M., Green synthesis of coumarin derivatives using Brønsted acidic pyridinium based ionic liquid [MBSPy][HSO 4] to control an opportunistic human and a devastating plant pathogenic fungus Macrophomina phaseolina, RSC Advances, 12(37), 23963-23972, 2022.
  • [24] Fu, W., Chen, J., Cai, Y., Lei, Y., Chen, L., Pei, L., ... & Ruan, J. (2010). Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.), Ching. Journal of Ethnopharmacology, 130(3), 521-528, 2010.
  • [25] Xie, L., Guo, H. F., Lu, H., Zhuang, X. M., Zhang, A. M., Wu, G., ... & Jiang, S., Development and preclinical studies of broad-spectrum anti-HIV agent (3′ R, 4′ R)-3-cyanomethyl-4-methyl-3′, 4′-di-O-(S)-camphanoyl-(+)-cis-khellactone (3-cyanomethyl-4-methyl-DCK), Journal of medicinal chemistry, 51(24), 7689-7696, 2008.
  • [26] Karami, B., Kiani, M., ZrOCl2. 8H2O/SiO2: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction, Catalysis Communications, 14(1), 62-67, 2011.
  • [27] Trott, O., Olson, A. J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, 31(2), 455-461, 2010.
  • [28] Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinković, D., Jhoti, H., Crystal structure of human cytochrome P450 2C9 with bound warfarin, Nature, 424(6947), 464-468, 2003.
  • [29] Cao, H., Pauff, J. M., Hille, R., Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid, Journal of Biological Chemistry, 285(36), 28044-28053, 2010.
  • [30] Lountos, G. T., Jiang, R., Wellborn, W. B., Thaler, T. L., Bommarius, A. S., Orville, A. M., The crystal structure of NAD (P) H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme, Biochemistry, 45(32), 9648-9659, 2006.
  • [31] Blair-Johnson, M., Fiedler, T., Fenna, R., Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution, Biochemistry, 40(46), 13990-13997, 2001.
  • [32] Borbulevych, O. Y., Jankun, J., Selman, S. H., Skrzypczak‐Jankun, E., Lipoxygenase interactions with natural flavonoid, quercetin, reveal a complex with protocatechuic acid in its X‐ray structure at 2.1 Å resolution, Proteins: Structure, Function, and Bioinformatics, 54(1), 13-19, 2004.
  • [33] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P. E., The protein data bank, Nucleic Acids Research, 28(1), 235-242, 2000.
  • [34] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, 19(14), 1639-1662, 1998.
  • [35] Biovia, D. S., Discovery Studio Visualizer, v21.1.0.20298, Dassault Systèmes, San Diego, CA, USA, 2021.
  • [36] Daina, A., Michielin, O., Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports, 7(1), 42717, 2017.
  • [37] Banerjee, P., Eckert, A. O., Schrey, A. K., Preissner, R., ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research, 46(W1), 257-263, 2018.
  • [38] Al-Majedy, Y. K., Al-Duhaidahawi, D. L., Al-Azawi, K. F., Al-Amiery, A. A., Kadhum, A. A. H., Mohamad, A. B., Coumarins as potential antioxidant agents complemented with suggested mechanisms and approved by molecular modeling studies, Molecules, 21(2), 135, 2016.
  • [39] Onar, H. Ç., Yaşa, H., Sin, O., Comparison of antioxidant activities of mono-, di-and tri-substituted coumarins, Journal of the Turkish Chemical Society Section A: Chemistry, 7(1), 87-96, 2019.
  • [40] Pedersen, J. Z., Oliveira, C., Incerpi, S., Kumar, V., Fiore, A. M., De Vito, P., ... & Saso, L., Antioxidant activity of 4-methylcoumarins, Journal of Pharmacy and Pharmacology, 59(12), 1721-1728, 2007.
  • [41] Solo, P., Prasanna, D., Designing and docking studies of imidazole-based drugs as potential inhibitors of myeloperoxidase (MPO) mediated inflammation and oxidative stress, Biocatalysis and Agricultural Biotechnology, 43, 102421, 2022.
  • [42] Tran, L. T. T., Le, T. N., Ho, D. V., Nguyen, T. H., Pham, V. P. T., Van Pham, K. T., ... & Tran, M. H., Virtual screening and in vitro evaluation to identify a potential xanthine oxidase inhibitor isolated from Vietnamese Uvaria cordata, Natural Product Communications, 17(2), 1934578X221080339, 2022.
  • [43] Öztürkkan, F. E., Özdemir, M., Akbaba, G. B., Sertçelik, M., Yalçın, B., Necefoğlu, H., Hökelek, T., Synthesis, crystal structure, potential drug properties for Coronavirus of Co (II) and Zn (II) 2-chlorobenzoate with 3-cyanopyridine complexes, Journal of Molecular Structure, 1250, 131825, 2022.
  • [44] Nagar, P. R., Gajjar, N. D., Dhameliya, T. M., In search of SARS CoV-2 replication inhibitors: virtual screening, molecular dynamics simulations and ADMET analysis, Journal of Molecular Structure, 1246, 131190, 2021.

Bazı 4-klorometil Substitüe Kumarin Bileşiklerinin DPPH Antioksidan Deneyleri, Moleküler Kenetlenme Çalışmaları ve ADMET Tahminleri

Year 2024, Volume: 14 Issue: 2, 29 - 49, 31.12.2024
https://doi.org/10.37094/adyujsci.1572580

Abstract

Birçok bitkinin ikincil metobalitleri olan kumarinler ve türevleri, çeşitli biyolojik özelliklere sahip heterosiklik biyoaktif bileşiklerdir. Bu özelliklerinden dolayı çeşitli türevlerinin sentezi ve özelliklerinin araştırılması oldukça ilgi çekicidir. 4-(klorometil)-7-hidroksi-5-metil kumarin (1), 4-(klorometil)-7-histoksi-8-metil kumarin (2) ve 4-(klorometil)-7-hidroksi kumarin (3) Pechmann kondenzasyon reaksiyonu ile sentezlenmiş ve FT-IR, NMR spektrumları ve elementel analiz ile karakterize edilmiştir. Bileşiklerin antioksidant kapasiteleri UV-Vis spektrofotometrik yöntemi kullanılarak difenil-2-pikrilhidrazil (DPPH) radikal süpürme deneyleri ile araştırılmıştır. Moleküler yerleştirme ile bileşiklerin, ROS üreten enzimler sitokrom P-450, ksantin oksidaz, lipooksijenaz, monoamin oksidaz ve nikotinamid adenin dinükleotit fosfat oksidaz enzimleri ile etkileşimleri incelenmiştir. Tüm bileşikler enzimlerin aktif bölgeleriyle iyi etkileşim göstermiştir (about 6-8 kcal/mol). Bileşiklerin farmakokinetik ve toksikokinetik özellikleri, ilaç adayı olabilme potansiyelleri ADMET tahminleri yapılarak incelenmiştir. Tüm sonuçlar bileşiklerin, ilaç adayı olma potansiyellerine sahip özelliklere sahip bileşikler olduklarını göstermiştir.

References

  • [1] Kecel-Gunduz, S., Budama-Kilinc, Y., Bicak, B., Gok, B., Belmen, B., Aydogan, F., Yolacan, C., New coumarin derivative with potential antioxidant activity: Synthesis, DNA binding and in silico studies (Docking, MD, ADMET), Arabian Journal of Chemistry, 16(2), 104440, 2023.
  • [2] Özdemir, M., Taşkın, D., Ceyhan, D., Köksoy, B., Taşkın, T., Bulut, M., Yalçın, B., 7, 8-Dihydroxycoumarin derivatives: In silico molecular docking and in vitro anticholinesterase activity, Journal of Molecular Structure, 1274, 134535, 2023.
  • [3] Hadjipavlou-Litina, D., Kontogiorgis, C., Pontiki, E., Dakanali, M., Akoumianaki, A., Katerinopoulos, H. E., Anti-inflammatory and antioxidant activity of coumarins designed as potential fluorescent zinc sensors, Journal of Enzyme Inhibition and Medicinal Chemistry, 22(3), 287-292, 2007.
  • [4] Kostova, I., Synthetic and natural coumarins as cytotoxic agents, Current Medicinal Chemistry-Anti-Cancer Agents, 5(1), 29-46, 2005.
  • [5] Wu, Y., Xu, J., Liu, Y., Zeng, Y., Wu, G., A review on anti-tumor mechanisms of coumarins, Frontiers in Oncology, 10, 592853, 2020.
  • [6] Thakur, A., Singla, R., Jaitak, V., Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies, European Journal of Medicinal Chemistry, 101, 476-495, 2015.
  • [7] Chandra, K. M., Goud, N. S., Arifuddin, M., Alvala, M., Alvala, R., Angeli, A., Supuran, C. T., Synthesis and biological evaluation of novel 4, 7-disubstituted coumarins as selective tumor-associated carbonic anhydrase IX and XII inhibitors, Bioorganic & Medicinal Chemistry Letters, 39, 127877, 2021.
  • [8] Ostrowska, K., Coumarin-piperazine derivatives as biologically active compounds, Saudi Pharmaceutical Journal, 28(2), 220-232, 2020.
  • [9] Batran, R. Z., Kassem, A. F., Abbas, E. M., Elseginy, S. A., Mounier, M. M., Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells, Bioorganic & Medicinal Chemistry, 26(12), 3474-3490, 2018.
  • [10] Çelik, E., Özdemir, M., Yalçın, B., Koksoy, B., In silico study and structure-activity relations of glucose-bound coumarin derivatives against the NSP12 protein of SARS-CoV-2, Journal of Ata-Chem, 1(1), 29-37, 2021.
  • [11] Sabt, A., Abdelhafez, O. M., El-Haggar, R. S., Madkour, H. M., Eldehna, W. M., El-Khrisy, E. E. D. A., ... & Rashed, L. A., Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies, Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1095-1107, 2018.
  • [12] Klenkar, J., Molnar, M., Natural and synthetic coumarins as potential anticancer agents, Journal of Chemical And Pharmaceutical Research, 7(7), 1223-1238, 2015
  • [13] Holiyachi, M., Shastri, S. L., Chougala, B. M., Naik, N. S., Pawar, V., Shastri, L. A., ... & Sunagar, V. A., Design and synthesis of new series of dipyrromethane-coumarin and porphyrin-coumarin derivatives: Excellent anticancer agents, Journal of Molecular Structure, 1237, 130424, 2021.
  • [14] Kecel-Gunduz, S., Budama-Kilinc, Y., Gok, B., Bicak, B., Akman, G., Arvas, B., ... & Yolacan, C., Computer-aided anticancer drug design: In vitro and in silico studies of new iminocoumarin derivative, Journal of Molecular Structure, 1239, 130539, 2021.
  • [15] Song, X. F., Fan, J., Liu, L., Liu, X. F., Gao, F., Coumarin derivatives with anticancer activities: An update, Archiv der Pharmazie, 353(8), 2000025, 2020.
  • [16] Dorababu, A., Coumarin-heterocycle framework: A privileged approach in promising anticancer drug design, European Journal of Medicinal Chemistry Reports, 2, 100006, 2021.
  • [17] Souiei, S., Garah, F. B. E., Belkacem, M. A., Znati, M., Bouajila, J., Jannet, H. B., New flavonoid glycosides conjugates: synthesis, characterization, and evaluation of their cytotoxic activities, Turkish Journal of Chemistry, 43(2), 404-414, 2019.
  • [18] Costa, J. D. S., Ramos, R. D. S., Costa, K. D. S. L., Brasil, D. D. S. B., Silva, C. H. T. D. P. D., Ferreira, E. F. B., ... & Santos, C. B. R. D., An in silico study of the antioxidant ability for two caffeine analogs using molecular docking and quantum chemical methods, Molecules, 23(11), 2801, 2018.
  • [19] Sarı, S., Kılıç, N., Yılmaz, M., In vitro antioxidant activities and in silico molecular docking studies of N-substituted oxime derivatives, Structural Chemistry, 34(2), 605-616, 2023.
  • [20] Ye, X. W., Zheng, Y. C., Duan, Y. C., Wang, M. M., Yu, B., Ren, J. L., ... & Liu, H. M., Synthesis and biological evaluation of coumarin–1, 2, 3-triazole–dithiocarbamate hybrids as potent LSD1 inhibitors, Medicinal Chemistry Communications, 5(5), 650-654, 2014.
  • [21] Reddy, Y. T., Sonar, V. N., Crooks, P. A., Dasari, P. K., Reddy, P. N., Rajitha, B., Ceric ammonium nitrate (CAN): An efficient catalyst for the coumarin synthesis via Pechmann condensation using conventional heating and microwave irradiation. Synthetic Communications, 38(13), 2082-2088, 2008.
  • [22] Jawalekar, A. M., Meeuwenoord, N., Cremers, J. S. G., Overkleeft, H. S., van der Marel, G. A., Rutjes, F. P., Van Delft, F. L., Conjugation of nucleosides and oligonucleotides by [3+ 2] cycloaddition, The Journal of organic chemistry, 73(1), 287-290, 2008.
  • [23] Uroos, M., Javaid, A., Bashir, A., Tariq, J., Khan, I. H., Naz, S., ... & Sultan, M., Green synthesis of coumarin derivatives using Brønsted acidic pyridinium based ionic liquid [MBSPy][HSO 4] to control an opportunistic human and a devastating plant pathogenic fungus Macrophomina phaseolina, RSC Advances, 12(37), 23963-23972, 2022.
  • [24] Fu, W., Chen, J., Cai, Y., Lei, Y., Chen, L., Pei, L., ... & Ruan, J. (2010). Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.), Ching. Journal of Ethnopharmacology, 130(3), 521-528, 2010.
  • [25] Xie, L., Guo, H. F., Lu, H., Zhuang, X. M., Zhang, A. M., Wu, G., ... & Jiang, S., Development and preclinical studies of broad-spectrum anti-HIV agent (3′ R, 4′ R)-3-cyanomethyl-4-methyl-3′, 4′-di-O-(S)-camphanoyl-(+)-cis-khellactone (3-cyanomethyl-4-methyl-DCK), Journal of medicinal chemistry, 51(24), 7689-7696, 2008.
  • [26] Karami, B., Kiani, M., ZrOCl2. 8H2O/SiO2: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction, Catalysis Communications, 14(1), 62-67, 2011.
  • [27] Trott, O., Olson, A. J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, 31(2), 455-461, 2010.
  • [28] Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinković, D., Jhoti, H., Crystal structure of human cytochrome P450 2C9 with bound warfarin, Nature, 424(6947), 464-468, 2003.
  • [29] Cao, H., Pauff, J. M., Hille, R., Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid, Journal of Biological Chemistry, 285(36), 28044-28053, 2010.
  • [30] Lountos, G. T., Jiang, R., Wellborn, W. B., Thaler, T. L., Bommarius, A. S., Orville, A. M., The crystal structure of NAD (P) H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme, Biochemistry, 45(32), 9648-9659, 2006.
  • [31] Blair-Johnson, M., Fiedler, T., Fenna, R., Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution, Biochemistry, 40(46), 13990-13997, 2001.
  • [32] Borbulevych, O. Y., Jankun, J., Selman, S. H., Skrzypczak‐Jankun, E., Lipoxygenase interactions with natural flavonoid, quercetin, reveal a complex with protocatechuic acid in its X‐ray structure at 2.1 Å resolution, Proteins: Structure, Function, and Bioinformatics, 54(1), 13-19, 2004.
  • [33] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P. E., The protein data bank, Nucleic Acids Research, 28(1), 235-242, 2000.
  • [34] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, 19(14), 1639-1662, 1998.
  • [35] Biovia, D. S., Discovery Studio Visualizer, v21.1.0.20298, Dassault Systèmes, San Diego, CA, USA, 2021.
  • [36] Daina, A., Michielin, O., Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports, 7(1), 42717, 2017.
  • [37] Banerjee, P., Eckert, A. O., Schrey, A. K., Preissner, R., ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research, 46(W1), 257-263, 2018.
  • [38] Al-Majedy, Y. K., Al-Duhaidahawi, D. L., Al-Azawi, K. F., Al-Amiery, A. A., Kadhum, A. A. H., Mohamad, A. B., Coumarins as potential antioxidant agents complemented with suggested mechanisms and approved by molecular modeling studies, Molecules, 21(2), 135, 2016.
  • [39] Onar, H. Ç., Yaşa, H., Sin, O., Comparison of antioxidant activities of mono-, di-and tri-substituted coumarins, Journal of the Turkish Chemical Society Section A: Chemistry, 7(1), 87-96, 2019.
  • [40] Pedersen, J. Z., Oliveira, C., Incerpi, S., Kumar, V., Fiore, A. M., De Vito, P., ... & Saso, L., Antioxidant activity of 4-methylcoumarins, Journal of Pharmacy and Pharmacology, 59(12), 1721-1728, 2007.
  • [41] Solo, P., Prasanna, D., Designing and docking studies of imidazole-based drugs as potential inhibitors of myeloperoxidase (MPO) mediated inflammation and oxidative stress, Biocatalysis and Agricultural Biotechnology, 43, 102421, 2022.
  • [42] Tran, L. T. T., Le, T. N., Ho, D. V., Nguyen, T. H., Pham, V. P. T., Van Pham, K. T., ... & Tran, M. H., Virtual screening and in vitro evaluation to identify a potential xanthine oxidase inhibitor isolated from Vietnamese Uvaria cordata, Natural Product Communications, 17(2), 1934578X221080339, 2022.
  • [43] Öztürkkan, F. E., Özdemir, M., Akbaba, G. B., Sertçelik, M., Yalçın, B., Necefoğlu, H., Hökelek, T., Synthesis, crystal structure, potential drug properties for Coronavirus of Co (II) and Zn (II) 2-chlorobenzoate with 3-cyanopyridine complexes, Journal of Molecular Structure, 1250, 131825, 2022.
  • [44] Nagar, P. R., Gajjar, N. D., Dhameliya, T. M., In search of SARS CoV-2 replication inhibitors: virtual screening, molecular dynamics simulations and ADMET analysis, Journal of Molecular Structure, 1246, 131190, 2021.
There are 44 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Biology
Authors

Gamze Özgül Artuç 0000-0002-7869-1281

Publication Date December 31, 2024
Submission Date October 23, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Özgül Artuç, G. (2024). DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds. Adıyaman University Journal of Science, 14(2), 29-49. https://doi.org/10.37094/adyujsci.1572580
AMA Özgül Artuç G. DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds. ADYU J SCI. December 2024;14(2):29-49. doi:10.37094/adyujsci.1572580
Chicago Özgül Artuç, Gamze. “DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds”. Adıyaman University Journal of Science 14, no. 2 (December 2024): 29-49. https://doi.org/10.37094/adyujsci.1572580.
EndNote Özgül Artuç G (December 1, 2024) DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds. Adıyaman University Journal of Science 14 2 29–49.
IEEE G. Özgül Artuç, “DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds”, ADYU J SCI, vol. 14, no. 2, pp. 29–49, 2024, doi: 10.37094/adyujsci.1572580.
ISNAD Özgül Artuç, Gamze. “DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds”. Adıyaman University Journal of Science 14/2 (December 2024), 29-49. https://doi.org/10.37094/adyujsci.1572580.
JAMA Özgül Artuç G. DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds. ADYU J SCI. 2024;14:29–49.
MLA Özgül Artuç, Gamze. “DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds”. Adıyaman University Journal of Science, vol. 14, no. 2, 2024, pp. 29-49, doi:10.37094/adyujsci.1572580.
Vancouver Özgül Artuç G. DPPH Antioxidant Assays, Molecular Docking Studies and ADMET Predictions of Some 4-Chloromethyl Substituted Coumarin Compounds. ADYU J SCI. 2024;14(2):29-4.

...