Research Article
BibTex RIS Cite

COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi

Year 2022, , 337 - 342, 25.12.2022
https://doi.org/10.46332/aemj.1093184

Abstract

Amaç: Sigara, solunum yolu enfeksiyonları, kronik obstrüktif akciğer hastalığı ve akciğer kanseri için hem başlaması hem de kötü prognozu için önemli bir risk faktörüdür. COVID-19'un ciddiyetinin sigara içme durumu ile ilişkisi hakkında net bir veri bulunmamaktadır. Bu çalışmada, COVID-19 hastalarında sigara içen, sigara içmeyen ve sigarayı bırakmış olanların, mevcut oksidatif stres durumlarının ve COVID-19 hastalığı ile ilişkisinin değerlendirilmesi için tiyol ve iskemi modifiye albumin (İMA) düzeylerinin araştırılması amaçlanmaktadır.

Araçlar ve Yöntem: PCR test sonuçlarına göre COVID-19 tanısı alan 145 gönüllü hasta çalışmaya dahil edilmiştir. Bu hastalar kendi içinde sigara içmeyenler (grup 1, 49 hasta), sigara içenler (grup 2, 52 hasta), ve sigara içip bırakmış olanlar (grup 3, 44 hasta) olacak şekilde üç gruba ayrılmıştır. Hastalardan tiyol ve İMA düzeylerinin ölçümü için jelli biyokimya tüplerine venöz kan örnekleri alınmıştır. Tüm istatistiksel hesaplamalar SPSS yazılım programı kullanılarak yapılmıştır.

Bulgular: Gruplar karşılaştırıldığında grup 1 ile grup 3’ün ve grup 2 ile grup 3’ün tiyol düzeyleri arasında anlamlı fark bulunmuştur (sırasıyla, p=0.021; p=0.008). İMA düzeylerine bakıldığında da yine grup 1 ile grup 3’ün ve grup 2 ile grup 3’ün İMA düzeyleri arasında anlamlı fark bulunmuştur (sırasıyla, p=0.009; p=0.005).

Sonuç: Sigara kullanımının vücuttaki oksidan-antioksidan sistem arasındaki dengeyi bozmasının yanı sıra, sigarayı bırakmış COVID-19 hastalarında vücuttaki rejenerasyon sürecinde yine bu dengenin bozulduğu düşünülmektedir. Ayrıca COVID-19 hastalığı ile sigara kullanımı arasındaki ilişki henüz tartışmalı olsa da sigaranın bütün vücuttaki bütün sistemler üzerine olan zararlı etkileri olduğu tartışmasızdır.

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • 1. Bilano V, Gilmour S, Moffiet T, et al. Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet. 2015;385(9972):966-976.
  • 2. Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8(2):613-628.
  • 3. Milner D. The physiological effects of smoking on the respiratory system. Nurs Times. 2004;100(24):56-59.
  • 4. Siafakas N, Vermeire P, Pride Na, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European Respiratory Society Task Force. Eur Respir J. 1995;8(8):1398-1420.
  • 5. Sarir H, Henricks PA, van Houwelingen AH, Nijkamp FP, Folkerts G. Cells, mediators and Toll-like receptors in COPD. Eur J Pharmacol. 2008;585(2-3):346-353.
  • 6. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-590.
  • 7. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422.
  • 8. Kurtuluş M, Pirim İ. COVID-19 ve Sitokin Fırtınası. Forbes J Med. 2020;1(3):55-60.
  • 9. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721-724.
  • 10. Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. The Am J Clin Nutr. 2000;72(2):653S-669S.
  • 11. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-332.
  • 12. Erdem SS, Yerlikaya FH, Çiçekler H, Gül M. Association between ischemia-modified albumin, homocysteine, vitamin B12 and folic acid in patients with severe sepsis. Clin Chem Lab Med. 2012;50(8):1417-1421.
  • 13. Żurawska-Płaksej E, Grzebyk E, Marciniak D, Szymańska-Chabowska A, Piwowar A. Oxidatively modified forms of albumin in patients with risk factors of metabolic syndrome. J Endocrinol Invest. 2014;37(9):819-827.
  • 14. Sbarouni E, Georgiadou P, Voudris V. Ischemia modified albumin changes–review and clinical implications. Clin Chem Lab Med. 2011;49(2):177-184.
  • 15. Abboud H, Labreuche J, Meseguer E, et al. Ischemia-modified albumin in acute stroke. Cerebrovasc Dis. 2007;23(2-3):216-220.
  • 16. Cakir M, Karahan SC, Mentese A, et al. Ischemia-modified albumin levels in children with chronic liver disease. Gut Liver. 2012;6(1):92-97.
  • 17. Reddy CB, Cyriac C, Desle HB. Role of “Ischemia Modified Albumin”(IMA) in acute coronary syndromes. Indian Heart J. 2014;66(6):656-662.
  • 18. Berlin I, Thomas D, Le Faou A-L, Cornuz J. COVID-19 and smoking. Nicotine Tob Res. 2020;22(9):1650-1652.
  • 19. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-332.
  • 20. Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J Emerg Med. 2000;19(4):311-315.
  • 21. Gemcioglu E, Davutoglu M, Catalbas R, et al. Predictive values of biochemical markers as early indicators for severe COVID-19 cases in admission. Future Virol. 2021;16(5):353-367.
  • 22. Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili S-M, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22(1):1-10.
  • 23. Team E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) China, 2020. China CDC Wkly. 2020;2(8):113-122.
  • 24. Neira DP, Watts A, Seashore J, Polychronopoulou E, Kuo Y-F, Sharma G. Smoking and risk of COVID-19 hospitalization. Respir Med. 2021;182:106414.
  • 25. Lymperaki E, Makedou K, Iliadis S, Vagdatli E. Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia. 2015;19(4):293-297.
  • 26. Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985;311(1152):617-631.
  • 27. Valkonen M, Kuusi T. Passive smoking induces atherogenic changes in low-density lipoprotein. Circulation. 1998;97(20):2012-2016.
  • 28. Scheffler E, Wiest E, Woehrle J, et al. Smoking influences the atherogenic potential of low-density lipoprotein. Clin Investig. 1992;70(3):263-268.
  • 29. Is Y, Woodside J. Antioxidant in health and disease. J Clin Pathol. 2001;54(3):176-186.
  • 30. Turkoglu EB, Dikci S, Çelik E, et al. Thiol/disulfide homeostasis in patients with central serous chorioretinopathy. Curr Eye Res. 2016;41(11):1489-1491.
  • 31. Ozler S, Oztas E, Tokmak A, et al. The association of thiol/disulphide homeostasis and lipid accumulation index with cardiovascular risk factors in overweight adolescents with polycystic ovary syndrome. Clin Endocrinol. 2016;84(4):516-523.
  • 32. Prabhu A, Sarcar B, Kahali S, et al. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. Cancer Res. 2014;74(3):787-796.
  • 33. Biswas S, Chida AS, Rahman I. Redox modifications of protein–thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006;71(5):551-564.
  • 34. Erel Ö, Neşelioğlu S, Tunçay ME, et al. A sensitive indicator for the severity of COVID-19: Thiol. Turk J Med Sci. 2021;51(3):921-928.
  • 35. Battal F, Tekin M, Aylanç H, et al. Serum ischemia-modified albumin levels in adolescent smokers. Int J Adolesc Med Health. 2018;30(1):

The Evaluation of the Relationship Between Smoking Status and Thiol and Ischemia Modified Albumin Levels of COVID-19 Patients

Year 2022, , 337 - 342, 25.12.2022
https://doi.org/10.46332/aemj.1093184

Abstract

Purpose: Smoking is an important risk factor for both the onset and poor prognosis for respiratory tract infections, chronic obstructive pulmonary disease, and lung cancer. There are no clear data on the relationship of COVID-19 to smoking status. In this study, it is aimed to evaluate the thiol and ischemia modified albumin (IMA) levels of smokers, non-smokers and ex-smokers among COVID-19 patients.

Materials and methods: 145 volunteer patients diagnosed with COVID-19 according to PCR test results were included in the study. These patients were divided into three groups as non-smokers (group 1, 49 patients), smokers (group 2, 52 patients), and ex-smokers (group 3, 44 patients). Venous blood samples were taken from the patients into serum tubes for the measurement of thiol and IMA levels. All statistical evaluations were performed using SPSS software program.

Results: When the groups were compared, a significant difference was found between the thiol levels of group 1 and group 3, and between group 2 and group 3 (respectively, p=0.021, p=0.008). When the IMA levels were examined, a significant difference was found between the IMA levels of group 1 and group 3, and between group 2 and group 3 (respectively, p=0.009, p=0.005).

Conclusion: Smoking disrupts the balance between the oxidant-antioxidant system in the body, this balance is also disrupted in the regeneration process in the body in COVID-19 patients who have quit smoking. In addition, although the relationship between COVID-19 disease and smoking is still controversial, it is undisputed that smoking has harmful effects on all systems in the whole body.

Project Number

yok

References

  • 1. Bilano V, Gilmour S, Moffiet T, et al. Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet. 2015;385(9972):966-976.
  • 2. Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8(2):613-628.
  • 3. Milner D. The physiological effects of smoking on the respiratory system. Nurs Times. 2004;100(24):56-59.
  • 4. Siafakas N, Vermeire P, Pride Na, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European Respiratory Society Task Force. Eur Respir J. 1995;8(8):1398-1420.
  • 5. Sarir H, Henricks PA, van Houwelingen AH, Nijkamp FP, Folkerts G. Cells, mediators and Toll-like receptors in COPD. Eur J Pharmacol. 2008;585(2-3):346-353.
  • 6. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-590.
  • 7. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422.
  • 8. Kurtuluş M, Pirim İ. COVID-19 ve Sitokin Fırtınası. Forbes J Med. 2020;1(3):55-60.
  • 9. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721-724.
  • 10. Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. The Am J Clin Nutr. 2000;72(2):653S-669S.
  • 11. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-332.
  • 12. Erdem SS, Yerlikaya FH, Çiçekler H, Gül M. Association between ischemia-modified albumin, homocysteine, vitamin B12 and folic acid in patients with severe sepsis. Clin Chem Lab Med. 2012;50(8):1417-1421.
  • 13. Żurawska-Płaksej E, Grzebyk E, Marciniak D, Szymańska-Chabowska A, Piwowar A. Oxidatively modified forms of albumin in patients with risk factors of metabolic syndrome. J Endocrinol Invest. 2014;37(9):819-827.
  • 14. Sbarouni E, Georgiadou P, Voudris V. Ischemia modified albumin changes–review and clinical implications. Clin Chem Lab Med. 2011;49(2):177-184.
  • 15. Abboud H, Labreuche J, Meseguer E, et al. Ischemia-modified albumin in acute stroke. Cerebrovasc Dis. 2007;23(2-3):216-220.
  • 16. Cakir M, Karahan SC, Mentese A, et al. Ischemia-modified albumin levels in children with chronic liver disease. Gut Liver. 2012;6(1):92-97.
  • 17. Reddy CB, Cyriac C, Desle HB. Role of “Ischemia Modified Albumin”(IMA) in acute coronary syndromes. Indian Heart J. 2014;66(6):656-662.
  • 18. Berlin I, Thomas D, Le Faou A-L, Cornuz J. COVID-19 and smoking. Nicotine Tob Res. 2020;22(9):1650-1652.
  • 19. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-332.
  • 20. Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J Emerg Med. 2000;19(4):311-315.
  • 21. Gemcioglu E, Davutoglu M, Catalbas R, et al. Predictive values of biochemical markers as early indicators for severe COVID-19 cases in admission. Future Virol. 2021;16(5):353-367.
  • 22. Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili S-M, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22(1):1-10.
  • 23. Team E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) China, 2020. China CDC Wkly. 2020;2(8):113-122.
  • 24. Neira DP, Watts A, Seashore J, Polychronopoulou E, Kuo Y-F, Sharma G. Smoking and risk of COVID-19 hospitalization. Respir Med. 2021;182:106414.
  • 25. Lymperaki E, Makedou K, Iliadis S, Vagdatli E. Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia. 2015;19(4):293-297.
  • 26. Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985;311(1152):617-631.
  • 27. Valkonen M, Kuusi T. Passive smoking induces atherogenic changes in low-density lipoprotein. Circulation. 1998;97(20):2012-2016.
  • 28. Scheffler E, Wiest E, Woehrle J, et al. Smoking influences the atherogenic potential of low-density lipoprotein. Clin Investig. 1992;70(3):263-268.
  • 29. Is Y, Woodside J. Antioxidant in health and disease. J Clin Pathol. 2001;54(3):176-186.
  • 30. Turkoglu EB, Dikci S, Çelik E, et al. Thiol/disulfide homeostasis in patients with central serous chorioretinopathy. Curr Eye Res. 2016;41(11):1489-1491.
  • 31. Ozler S, Oztas E, Tokmak A, et al. The association of thiol/disulphide homeostasis and lipid accumulation index with cardiovascular risk factors in overweight adolescents with polycystic ovary syndrome. Clin Endocrinol. 2016;84(4):516-523.
  • 32. Prabhu A, Sarcar B, Kahali S, et al. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. Cancer Res. 2014;74(3):787-796.
  • 33. Biswas S, Chida AS, Rahman I. Redox modifications of protein–thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006;71(5):551-564.
  • 34. Erel Ö, Neşelioğlu S, Tunçay ME, et al. A sensitive indicator for the severity of COVID-19: Thiol. Turk J Med Sci. 2021;51(3):921-928.
  • 35. Battal F, Tekin M, Aylanç H, et al. Serum ischemia-modified albumin levels in adolescent smokers. Int J Adolesc Med Health. 2018;30(1):
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Funda Eren 0000-0002-8649-2493

Esra Fırat Oğuz 0000-0002-8147-5379

Salim Neşelioğlu 0000-0002-0974-5717

Rıdvan Fırat 0000-0002-4655-0927

Osman İnan 0000-0002-8717-3013

Emin Gemcioğlu 0000-0001-9751-8452

Enes Şahiner 0000-0003-4552-0387

İhsan Ateş 0000-0003-2858-6229

Özcan Erel 0000-0002-2996-3236

Project Number yok
Publication Date December 25, 2022
Published in Issue Year 2022

Cite

APA Eren, F., Fırat Oğuz, E., Neşelioğlu, S., Fırat, R., et al. (2022). COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi. Ahi Evran Medical Journal, 6(3), 337-342. https://doi.org/10.46332/aemj.1093184
AMA Eren F, Fırat Oğuz E, Neşelioğlu S, Fırat R, İnan O, Gemcioğlu E, Şahiner E, Ateş İ, Erel Ö. COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi. Ahi Evran Med J. December 2022;6(3):337-342. doi:10.46332/aemj.1093184
Chicago Eren, Funda, Esra Fırat Oğuz, Salim Neşelioğlu, Rıdvan Fırat, Osman İnan, Emin Gemcioğlu, Enes Şahiner, İhsan Ateş, and Özcan Erel. “COVID-19 Hastalarının Sigara İçme Durumları Ile Tiyol Ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi”. Ahi Evran Medical Journal 6, no. 3 (December 2022): 337-42. https://doi.org/10.46332/aemj.1093184.
EndNote Eren F, Fırat Oğuz E, Neşelioğlu S, Fırat R, İnan O, Gemcioğlu E, Şahiner E, Ateş İ, Erel Ö (December 1, 2022) COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi. Ahi Evran Medical Journal 6 3 337–342.
IEEE F. Eren, E. Fırat Oğuz, S. Neşelioğlu, R. Fırat, O. İnan, E. Gemcioğlu, E. Şahiner, İ. Ateş, and Ö. Erel, “COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi”, Ahi Evran Med J, vol. 6, no. 3, pp. 337–342, 2022, doi: 10.46332/aemj.1093184.
ISNAD Eren, Funda et al. “COVID-19 Hastalarının Sigara İçme Durumları Ile Tiyol Ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi”. Ahi Evran Medical Journal 6/3 (December 2022), 337-342. https://doi.org/10.46332/aemj.1093184.
JAMA Eren F, Fırat Oğuz E, Neşelioğlu S, Fırat R, İnan O, Gemcioğlu E, Şahiner E, Ateş İ, Erel Ö. COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi. Ahi Evran Med J. 2022;6:337–342.
MLA Eren, Funda et al. “COVID-19 Hastalarının Sigara İçme Durumları Ile Tiyol Ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi”. Ahi Evran Medical Journal, vol. 6, no. 3, 2022, pp. 337-42, doi:10.46332/aemj.1093184.
Vancouver Eren F, Fırat Oğuz E, Neşelioğlu S, Fırat R, İnan O, Gemcioğlu E, Şahiner E, Ateş İ, Erel Ö. COVID-19 Hastalarının Sigara İçme Durumları ile Tiyol ve İskemi Modifiye Albumin Düzeyleri Arasındaki İlişkinin Değerlendirilmesi. Ahi Evran Med J. 2022;6(3):337-42.

Dergimiz, ULAKBİM TR Dizin, DOAJ, Index Copernicus, EBSCO ve Türkiye Atıf Dizini (Turkiye Citation Index)' de indekslenmektedir. Ahi Evran Tıp dergisi süreli bilimsel yayındır. Kaynak gösterilmeden kullanılamaz. Makalelerin sorumlulukları yazarlara aittir.

Creative Commons Lisansı
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.