Research Article
BibTex RIS Cite

Evaluation of the Therapeutic Effects of Carnosine in Terms of DNA Damage in Diabetic Rat Kidney and Liver Tissues

Year 2022, , 248 - 254, 25.12.2022
https://doi.org/10.46332/aemj.991916

Abstract

Purpose: Diabetes mellitus is a metabolic syndrome due to a relative deficiency of insulin secretion or a decrease in the sensitivity of tissues to insulin. It is known that oxidative stress plays a role in the pathophysiology of diabetes-related complications and causes DNA damage. In this study, it was aimed to examine the therapeutic effect of carnosine on DNA damage caused by diabetes on kidney and liver tissues.

Material and Methods: 32 Sprague Dawley rats were divided into 4 groups as control, streptozotocin (STZ), carnosine (10 mg/kg) and STZ+carnosine group. 50 mg/kg STZ was administered intraperitoneally (ip) to 16 rats. On the 3rd day after STZ administration, the blood sugar level of the animals was measured and those above 250 mg/dL were considered as diabetes. Carnosine (10 mg/kg, ip) was administered to 8 of the rats considered to have diabetes for 10 days. Blood glucose levels and body weights were measured at regular intervals. After decapitation, DNA damage was determined by Comet Assay method in obtained liver and kidney tissues.

Results: It was determined that there was a decrease in body weight and an increase in blood glucose levels in the STZ group. According to the results of Comet Assay method, it was determined that there was an increase in DNA damage in kidney and liver tissues of the STZ group, and a decrease in DNA damage in the STZ+carnosine group.

Conclusion: It was concluded that carnosine used as an antioxidant contributes to the reduction of DNA damage caused by diabetes in kidney and liver tissue.

References

  • 1. Jangir RN, Jain, GC. Diabetes mellitus induced impairment of male reproductive functions: a review. Curr Diabetes Rev. 2014;10(3):147-157.
  • 2. Vural H, Sabuncu T, Arslan SO, Aksoy N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J Pineal Res. 2008; 31(3):193-198.
  • 3. Lenzen, S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226.
  • 4. Murata M, Takahashi A, Saito I, Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 1999;57(8):881-887.
  • 5. Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41(12 Pt 2):1819-1828.
  • 6. Yapışlar H, Aydogan S. Effect of carnosine on erythrocyte deformability in diabetic rats. Arch Physiol Biochem. 2012;118(5):265-272.
  • 7. Bakardijiev A, Bauer K. Biosynthesis, release and uptake of carnosine in primary cultures. Biochemistry. 2000;65(7):779-782.
  • 8. Boldyrev AA. Problems and perspectives in studying the biological role of carnosine. Biochemistry. 2000;65(7):751-756.
  • 9. Brownson C, Hipkiss AR. Carnosine reacts with a glycated protein. Free Radic Biol Med. 2000;28(10):1564-1570.
  • 10. Lee Y, Hsu C, Lin M, Liu K, Yin M. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol. 2005;513(1-2):145-150.
  • 11. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):536-546.
  • 12. Mirzakhani N, Farshid AA, Tamaddofard E, Imani M, Erfanparast A, Noroozinia F. Carnosine improves functional recovery and structural regeneration after sciatic nerve crush injury in rats. Life Sciences. 2018; 215:22-30.
  • 13. Akdağ MZ, Daşdağ S, Cantürk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016;75 (Pt B):116-122.
  • 14. Akdağ M, Daşdağ S, Cantürk F, Akdağ MZ. Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells. Electromagn Biol Med. 2018;37(2):66-75.
  • 15. Altınova A, Aktürk M, Törüner FB, Arslan M. Type I Diabetes Mellitus and Insulin Resistance. Review. Turkiye Klinikleri J Med Sci. 2007;27(2):220-223.
  • 16. Thang J, Kusaka I, Massey A, Rollıns S, Zhang J. Increased Rho. A translocation in aorta of diabetic rats. Acta Pharmacol Sin. 2006;27(5):543-548.
  • 17. Satav JG, Katyare SS. Effect of STZ induced diabetes on oxidative energy metabolism in rat liver mitochondria. A comperative study of early and late effects. Indian J Clin Biochem. 2004;19(2):23-31.
  • 18. Jangir RN, Jain GC. Diabetes mellitus induced impairment of male reproductive functions: a review. Curr Diabetes Rev. 2014;10(3):147-157.
  • 19. Cooke DW, Plotnick L. Type 1 diabetes mellitus in pediatrics. Pediatr Rev. 2008;29(11):374-384.
  • 20. Ballester J, Muñoz MC, Domínguez J, Rigau T, Guinovart JJ, Rodríguez‐Gil JE. Insulin‐dependent diabetes affects testicular function by FSH‐and LH‐linked mechanisms. J Androl. 2013;25(5):706-719.
  • 21. Kanter M, Aktas C, Erboga M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin induced diabetic rat testis. Food Chem Toxicol. 2012;50(3):719-725.
  • 22. Khaki A, Fathiazad F, Nouri M, et. al. Beneficial effects of quercetin on sperm parameters in streptozotocin‐induced diabetic male rats. Phytother Res. 2010; 24(9):1285-1291.
  • 23. Sajedianfard J, Behroozi Z, Nazifi S, Rajaian H. The effect of different oral doses of hydroalcoholic extractof silymarin on the blood oxidative stress ındicators in streptozotocin ınduced diabetic rats. Int J Pept Res Ther. 2013;19(2):93-98.
  • 24. Sajedianfard J, Behroozi Z, Nazifi S. The effects of a hydroalcoholic extract of Silymarin on serum lipids profiles in streptoztocine induced diabetic rats. Comp Clin Pathol. 2014;23(3):779-784.
  • 25. Wainstein J, Ganz T, Boaz M, et. al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food. 2012;15(7):605-610.
  • 26. Ahmadvand H, Noori A, Dehnoo MG, Bagheri S, Cheraghi RA. Hypoglycemic, hypolipidemic and antiatherogenic effects of oleuropein in alloxan-induced Type 1 diabetic rats. Asian Pac J Trop Dis. 2014;4(1):421-425.
  • 27. Liu X, Jiang L, Lei L, et. al. Carnosine alleviates diabetic nephropathy by targeting GNMT, a key enzyme mediating renal inflammation and fibrosis. Clinical Science. 2020;134(23):3175-3193.
  • 28. Karkabounas S, Papadopoulos N, Anastasiadou C, et. al. Effects of αLipic Acid, Carnosine and Thiamine Sopplementation in Obese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind Study. J Med Food. 2018;21(12):1197-1203.
  • 29. Vahdatpour T, Nokhodchi, Zakeri-Mlanı P, et. al. Leucine–glycine and carnosine dipeptides prevent diabetes induced by multiple lowdoses of streptozotocin in an experimental model of adult mice. J. Diabetes Investig. 2019;10(5):1177-1188.
  • 30. Halliwell B, Dizdaroglu M. The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic Res Commun. 1992;16(2):75-87.
  • 31. Aruoma OI, Halliwell B, Dizdaroglu M. Iron Ion-Dependent Modification of Bases in DNA by the Superoxide Radical-Generating System Hypoxanthine/Xanthine Oxidase. J Biol Chem. 1989;264(22): 13024-13028.
  • 32. Türkmen F, Akkuş İ, Büyükbaş S, ve ark. Diabetes Mellitus’da Biyokimyasal Değişiklikler ve Komplikasyonlar. Turkiye Klinikleri J Med Sci. 1990;10(1):1-10.
  • 33. Kushwaha S, Vikram A, Jena GB. Protective effects of enalapril in streptozotocin induced diabetic rat: studies of DNA damage, apoptosis and expression of CCN2 in the heart, kidney and liver. J Appl Toxicol. 2011;32(9):662-672.
  • 34. Hannon-Fletcher MP, O'Kane MJ, Moles KW, Weatherup C, Barnett CR, Barnett YA. Levels of peripheral blood cell DNA damage in insulin dependent diabetes mellitus human subjects. Mutat Res. 2000;460(1):53-60.
  • 35. Blasiak J, Arabski M, Krupa R, et. al. DNA damage and repair in type 2 diabetes mellitus. Mutat Res. 2004;554(1-2):297-304.
  • 36. Sliwinska A, Blasiak J, Kasznicki J, Drzewoski J. In vitro effect of gliclazide on DNA damage and repair in patients with type 2 diabetes mellitus (T2DM). Chem Biol Interact. 2008;173(3):159-165.
  • 37. Kasznicki J, Kosmalski M, Sliwinska A, et. al. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Biol Rep. 2012;39(9):8669-8678.
  • 38. Szeto YT, Collins AR, Benzie IFF. Effects of dietary antioxidants on DNA damage in lysed cells using a modified comet assay procedure. Mutat Res. 2002;500(1-2):31-38.
  • 39. Chai PC, Long LH, Halliwell B. Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem Biophys Res Commun. 2003;304(4):650-654.
  • 40. Peters V, Yard B,Schmitt CP. Carnosine and Diabetic Nephropatht. Curr Med Chem. 2020;27(11):1801-1812.
  • 41. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40(4):405-412.

Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi

Year 2022, , 248 - 254, 25.12.2022
https://doi.org/10.46332/aemj.991916

Abstract

Amaç: Diyabetes mellitus, insülin salgısının göreceli eksikliği veya dokuların insüline duyarlılığındaki azalmaya bağlı meydana gelen metabolik bir sendromdur. Oksidatif stresin diyabete bağlı komplikasyonların patofizyolojisinde rol oynadığı ve DNA hasarına neden olduğu bilinmektedir. Bu çalışmada diyabetin böbrek ve karaciğer dokularında meydana getirdiği DNA hasarına karşı karnozinin tedavi edici etkisinin incelenmesi amaçlanmıştır.

Araçlar ve Yöntem: 32 tane Sprague Dawley cinsi sıçan; kontrol, streptozotosin (STZ), karnozin ve STZ+karnozin grubu olmak üzere 4 gruba ayrıldı. 16 sıçana 50 mg/kg STZ intraperitoneal (ip) olarak uygulandı. STZ uygulamasından sonraki 3. günde hayvanların kan şekeri seviyesi ölçüldü ve 250 mg/dL’nin üzerindekiler diyabet olarak kabul edildi. Diyabetli sıçanlardan 8’ine 10 gün süreyle karnozin uygulandı. Düzenli aralıklarla kan şekeri seviyeleri ve vücut ağırlıkları ölçüldü. Dekapitasyon sonrası elde edilen karaciğer ve böbrek dokularında Comet Assay yöntemi ile DNA hasarı belirlendi.

Bulgular: STZ grubunda vücut ağırlığında azalma ve kan glikoz düzeylerinde artış meydana geldiği tespit edildi. Comet Assay yöntemi sonuçlarına göre STZ grubunun böbrek ve karaciğer dokularında DNA hasarında artış, STZ+karnozin grubunda ise DNA hasarında azalma meydana geldiği belirlendi.

Sonuç: Antioksidan olarak kullanılan karnozinin böbrek ve karaciğer dokusunda diyabetin neden olduğu DNA hasarının azalmasına katkı sağladığı sonucuna varıldı.

References

  • 1. Jangir RN, Jain, GC. Diabetes mellitus induced impairment of male reproductive functions: a review. Curr Diabetes Rev. 2014;10(3):147-157.
  • 2. Vural H, Sabuncu T, Arslan SO, Aksoy N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J Pineal Res. 2008; 31(3):193-198.
  • 3. Lenzen, S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226.
  • 4. Murata M, Takahashi A, Saito I, Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 1999;57(8):881-887.
  • 5. Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41(12 Pt 2):1819-1828.
  • 6. Yapışlar H, Aydogan S. Effect of carnosine on erythrocyte deformability in diabetic rats. Arch Physiol Biochem. 2012;118(5):265-272.
  • 7. Bakardijiev A, Bauer K. Biosynthesis, release and uptake of carnosine in primary cultures. Biochemistry. 2000;65(7):779-782.
  • 8. Boldyrev AA. Problems and perspectives in studying the biological role of carnosine. Biochemistry. 2000;65(7):751-756.
  • 9. Brownson C, Hipkiss AR. Carnosine reacts with a glycated protein. Free Radic Biol Med. 2000;28(10):1564-1570.
  • 10. Lee Y, Hsu C, Lin M, Liu K, Yin M. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol. 2005;513(1-2):145-150.
  • 11. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):536-546.
  • 12. Mirzakhani N, Farshid AA, Tamaddofard E, Imani M, Erfanparast A, Noroozinia F. Carnosine improves functional recovery and structural regeneration after sciatic nerve crush injury in rats. Life Sciences. 2018; 215:22-30.
  • 13. Akdağ MZ, Daşdağ S, Cantürk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016;75 (Pt B):116-122.
  • 14. Akdağ M, Daşdağ S, Cantürk F, Akdağ MZ. Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells. Electromagn Biol Med. 2018;37(2):66-75.
  • 15. Altınova A, Aktürk M, Törüner FB, Arslan M. Type I Diabetes Mellitus and Insulin Resistance. Review. Turkiye Klinikleri J Med Sci. 2007;27(2):220-223.
  • 16. Thang J, Kusaka I, Massey A, Rollıns S, Zhang J. Increased Rho. A translocation in aorta of diabetic rats. Acta Pharmacol Sin. 2006;27(5):543-548.
  • 17. Satav JG, Katyare SS. Effect of STZ induced diabetes on oxidative energy metabolism in rat liver mitochondria. A comperative study of early and late effects. Indian J Clin Biochem. 2004;19(2):23-31.
  • 18. Jangir RN, Jain GC. Diabetes mellitus induced impairment of male reproductive functions: a review. Curr Diabetes Rev. 2014;10(3):147-157.
  • 19. Cooke DW, Plotnick L. Type 1 diabetes mellitus in pediatrics. Pediatr Rev. 2008;29(11):374-384.
  • 20. Ballester J, Muñoz MC, Domínguez J, Rigau T, Guinovart JJ, Rodríguez‐Gil JE. Insulin‐dependent diabetes affects testicular function by FSH‐and LH‐linked mechanisms. J Androl. 2013;25(5):706-719.
  • 21. Kanter M, Aktas C, Erboga M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin induced diabetic rat testis. Food Chem Toxicol. 2012;50(3):719-725.
  • 22. Khaki A, Fathiazad F, Nouri M, et. al. Beneficial effects of quercetin on sperm parameters in streptozotocin‐induced diabetic male rats. Phytother Res. 2010; 24(9):1285-1291.
  • 23. Sajedianfard J, Behroozi Z, Nazifi S, Rajaian H. The effect of different oral doses of hydroalcoholic extractof silymarin on the blood oxidative stress ındicators in streptozotocin ınduced diabetic rats. Int J Pept Res Ther. 2013;19(2):93-98.
  • 24. Sajedianfard J, Behroozi Z, Nazifi S. The effects of a hydroalcoholic extract of Silymarin on serum lipids profiles in streptoztocine induced diabetic rats. Comp Clin Pathol. 2014;23(3):779-784.
  • 25. Wainstein J, Ganz T, Boaz M, et. al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food. 2012;15(7):605-610.
  • 26. Ahmadvand H, Noori A, Dehnoo MG, Bagheri S, Cheraghi RA. Hypoglycemic, hypolipidemic and antiatherogenic effects of oleuropein in alloxan-induced Type 1 diabetic rats. Asian Pac J Trop Dis. 2014;4(1):421-425.
  • 27. Liu X, Jiang L, Lei L, et. al. Carnosine alleviates diabetic nephropathy by targeting GNMT, a key enzyme mediating renal inflammation and fibrosis. Clinical Science. 2020;134(23):3175-3193.
  • 28. Karkabounas S, Papadopoulos N, Anastasiadou C, et. al. Effects of αLipic Acid, Carnosine and Thiamine Sopplementation in Obese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind Study. J Med Food. 2018;21(12):1197-1203.
  • 29. Vahdatpour T, Nokhodchi, Zakeri-Mlanı P, et. al. Leucine–glycine and carnosine dipeptides prevent diabetes induced by multiple lowdoses of streptozotocin in an experimental model of adult mice. J. Diabetes Investig. 2019;10(5):1177-1188.
  • 30. Halliwell B, Dizdaroglu M. The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic Res Commun. 1992;16(2):75-87.
  • 31. Aruoma OI, Halliwell B, Dizdaroglu M. Iron Ion-Dependent Modification of Bases in DNA by the Superoxide Radical-Generating System Hypoxanthine/Xanthine Oxidase. J Biol Chem. 1989;264(22): 13024-13028.
  • 32. Türkmen F, Akkuş İ, Büyükbaş S, ve ark. Diabetes Mellitus’da Biyokimyasal Değişiklikler ve Komplikasyonlar. Turkiye Klinikleri J Med Sci. 1990;10(1):1-10.
  • 33. Kushwaha S, Vikram A, Jena GB. Protective effects of enalapril in streptozotocin induced diabetic rat: studies of DNA damage, apoptosis and expression of CCN2 in the heart, kidney and liver. J Appl Toxicol. 2011;32(9):662-672.
  • 34. Hannon-Fletcher MP, O'Kane MJ, Moles KW, Weatherup C, Barnett CR, Barnett YA. Levels of peripheral blood cell DNA damage in insulin dependent diabetes mellitus human subjects. Mutat Res. 2000;460(1):53-60.
  • 35. Blasiak J, Arabski M, Krupa R, et. al. DNA damage and repair in type 2 diabetes mellitus. Mutat Res. 2004;554(1-2):297-304.
  • 36. Sliwinska A, Blasiak J, Kasznicki J, Drzewoski J. In vitro effect of gliclazide on DNA damage and repair in patients with type 2 diabetes mellitus (T2DM). Chem Biol Interact. 2008;173(3):159-165.
  • 37. Kasznicki J, Kosmalski M, Sliwinska A, et. al. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Biol Rep. 2012;39(9):8669-8678.
  • 38. Szeto YT, Collins AR, Benzie IFF. Effects of dietary antioxidants on DNA damage in lysed cells using a modified comet assay procedure. Mutat Res. 2002;500(1-2):31-38.
  • 39. Chai PC, Long LH, Halliwell B. Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem Biophys Res Commun. 2003;304(4):650-654.
  • 40. Peters V, Yard B,Schmitt CP. Carnosine and Diabetic Nephropatht. Curr Med Chem. 2020;27(11):1801-1812.
  • 41. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40(4):405-412.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Esra Balcıoğlu 0000-0003-1474-0432

Münevver Baran 0000-0003-0369-1022

Fazile Cantürk Tan 0000-0002-0747-2209

Tuba Özkul 0000-0001-7982-4317

Arzu Yay 0000-0002-0541-8372

Menekşe Ülger 0000-0003-0108-7948

Betül Yalçın 0000-0003-1176-8843

Demet Bolat 0000-0002-3496-1630

Publication Date December 25, 2022
Published in Issue Year 2022

Cite

APA Balcıoğlu, E., Baran, M., Cantürk Tan, F., Özkul, T., et al. (2022). Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi. Ahi Evran Medical Journal, 6(3), 248-254. https://doi.org/10.46332/aemj.991916
AMA Balcıoğlu E, Baran M, Cantürk Tan F, Özkul T, Yay A, Ülger M, Yalçın B, Bolat D. Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi. Ahi Evran Med J. December 2022;6(3):248-254. doi:10.46332/aemj.991916
Chicago Balcıoğlu, Esra, Münevver Baran, Fazile Cantürk Tan, Tuba Özkul, Arzu Yay, Menekşe Ülger, Betül Yalçın, and Demet Bolat. “Diyabetik Sıçan Böbrek Ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi”. Ahi Evran Medical Journal 6, no. 3 (December 2022): 248-54. https://doi.org/10.46332/aemj.991916.
EndNote Balcıoğlu E, Baran M, Cantürk Tan F, Özkul T, Yay A, Ülger M, Yalçın B, Bolat D (December 1, 2022) Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi. Ahi Evran Medical Journal 6 3 248–254.
IEEE E. Balcıoğlu, M. Baran, F. Cantürk Tan, T. Özkul, A. Yay, M. Ülger, B. Yalçın, and D. Bolat, “Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi”, Ahi Evran Med J, vol. 6, no. 3, pp. 248–254, 2022, doi: 10.46332/aemj.991916.
ISNAD Balcıoğlu, Esra et al. “Diyabetik Sıçan Böbrek Ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi”. Ahi Evran Medical Journal 6/3 (December 2022), 248-254. https://doi.org/10.46332/aemj.991916.
JAMA Balcıoğlu E, Baran M, Cantürk Tan F, Özkul T, Yay A, Ülger M, Yalçın B, Bolat D. Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi. Ahi Evran Med J. 2022;6:248–254.
MLA Balcıoğlu, Esra et al. “Diyabetik Sıçan Böbrek Ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi”. Ahi Evran Medical Journal, vol. 6, no. 3, 2022, pp. 248-54, doi:10.46332/aemj.991916.
Vancouver Balcıoğlu E, Baran M, Cantürk Tan F, Özkul T, Yay A, Ülger M, Yalçın B, Bolat D. Diyabetik Sıçan Böbrek ve Karaciğer Dokularında Karnozinin Tedavi Edici Etkilerinin DNA Hasarı Açısından Değerlendirilmesi. Ahi Evran Med J. 2022;6(3):248-54.

Dergimiz, ULAKBİM TR Dizin, DOAJ, Index Copernicus, EBSCO ve Türkiye Atıf Dizini (Turkiye Citation Index)' de indekslenmektedir. Ahi Evran Tıp dergisi süreli bilimsel yayındır. Kaynak gösterilmeden kullanılamaz. Makalelerin sorumlulukları yazarlara aittir.

Creative Commons Lisansı
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.