Review
BibTex RIS Cite

Experimental Models in Parkinson’s Disease: Advantages and Disadvantages

Year 2024, Volume: 2 Issue: 2, 80 - 87, 30.06.2024
https://doi.org/10.61845/agrimedical.1471854

Abstract

Parkinson’s disease is a complex neurodegenerative disease that affects millions of people worldwide. The incidence and prevalence of Parkinson’s disease, the second most common neurodegenerative disease after Alzheimer’s disease, is gradually increasing. Although it is an important public health concern, the mechanisms related to Parkinson’s disease have not been fully elucidated. One of the main approaches to research on mechanisms and treatment related to Parkinson’s disease is the use of experimental models. In vitro and in vivo models enable the investigation of disease-related molecular and cellular processes and the testing of potential treatments. A variety of experimental models are used in Parkinson’s disease research, including toxin-induced models, genetic models, and transgenic models, each with their strengths and limitations. Experimental models come to the fore in research on Parkinson’s disease, which does not yet have a radical treatment. However, it is important to recognize that no experimental model truly represents all aspects of human Parkinson’s disease. For this reason, the findings obtained from the studies need to be supported by different test systems and interpreted carefully. Experimental models are invaluable in the quest to elucidate the mechanism of Parkinson’s disease and develop effective treatments.

References

  • 1. DeMaagd G, Philip A. Parkinson's Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. P T. 2015;40(8):504-532.
  • 2. WHO. 2022 Parkinson’s Disease: Key facts. https://www.who.int/news-room/fact-sheets/detail/ Parkinson-disease (accessed 22.04.2024).
  • 3. Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 2018;109(Pt B):249-257.
  • 4. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548-560.
  • 5. Hayes MT. Parkinson’s disease and Parkinsonism. Am J Med. 2019;132(7):802-807.
  • 6. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284-2303.
  • 7. Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. J Parkinsons Dis. 2018;8(s1):S3-S8.
  • 8. GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939-953.
  • 9. Lampropoulos IC, Malli F, Sinani O, Gourgoulianis KI, Xiromerisiou G. Worldwide trends in mortality related to Parkinson’s disease in the period of 1994-2019: Analysis of vital registration data from the WHO Mortality Database. Front Neurol. 2022;13:956440.
  • 10. Chao Y, Wong SC, Tan EK. Evidence of inflammatory system involvement in Parkinson's disease. Biomed Res Int. 2014;2014:308654.
  • 11. Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808.
  • 12. Reich SG, Savitt JM. Parkinson’s disease. Med Clin North Am. 2019;103(2):337-350.
  • 13. Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 2022;13(3):471.
  • 14. Church FC. Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease. Biomolecules. 2021;11(4):612.
  • 15. Lee TK, Yankee EL. A review on Parkinson’s disease treatment. NN. 2021.
  • 16. Adam H, Gopinath SCB, Md Arshad MK, et al. An update on pathogenesis and clinical scenario for Parkinson’s disease: diagnosis and treatment. 3 Biotech. 2023;13(5):142.
  • 17. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889- 909.
  • 18. Yörük MA, Okkay U, Budak Savaş A. et al. Behavioral Tests Used in Experimental Animal Model, 2022;(3):14-22.
  • 19. Chia SJ, Tan EK, Chao YX. Historical perspective: models of Parkinson’s disease, Int J Mol Sci. 2020;(21):7.
  • 20. Özay Ö, Arslantaş D. Pestisit maruziyeti ve nöropsikiyatrik etkileri / pesticide exposure and neuropsychiatric effects. OJM. 2016;38(1).
  • 21. Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90.
  • 22. Kin K, Yasuhara T, Kameda M, Date I. Animal models for Parkinson’s disease research: trends in the 2000s. Int. J. Mol. Sci. 2019; 20(21):5402.
  • 23. Salari S, Bagheri M. In vivo, in vitro and pharmacologic models of Parkinson’s disease, Physiol Res. 2019;68(1):17-24.
  • 24. Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson’s disease. Comp Biochem Physiol C Toxicol Pharmacol. 2022;252:109213.
  • 25. Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci. 2021;21:422–433.
  • 26. Innos J, Hickey MA. Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol. 2021;34(5):1223-1239.
  • 27. Rocha SM, Bantle CM, Aboellail T, Chatterjee D, Smeyne RJ, Tjalkens RB. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiol Dis. 2022;167:105685.
  • 28. Radad K, Al-Shraim M, Al-Emam A, et al. Rotenone: from modelling to implication in Parkinson’s disease. Folia Neuropathol. 2019;57(4):317-326.
  • 29. Grandi LC, Di Giovanni G, Galati S. Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. J. Neurosci. Methods 2018;(308):205–218.
  • 30. Leão AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: New perspectives to a long-standing model. Brain Pathol. 2015;(25): 377–390.
  • 31. Ostinelli EG, Brooke-Powney MJ, Li X, Adams CE. Haloperidol for psychosis-induced aggression or agitation (rapid tranquillisation). Cochrane Database Syst Rev. 2017;7(7):CD009377.
  • 32. Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci. 2021;53(11):3743-3767.
  • 33. Ferah Okkay I, Okkay U, Cicek B, et al. Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson's disease. Mol Biol Rep. 2021;48(12):7711-7717.
  • 34. Kostrzewa RM. Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna). 2022;129(5-6):445-461.
  • 35. Horvathova L, Padova A, Tillinger A, Osacka J, Bizik J, Mravec B. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress. 2016;(19)5: 528-534.
  • 36. Jiang YH, Jiang H, Yang JL et al. Cardiac dysregulation and myocardial injury in a 6-hydroxydopamine-induced rat model of sympathetic denervation. PLoS One. 2015;(10)7:e0133971.
  • 37. Mishra I, Pullum KB, Eads KN, Strunjas AR, Ashley NT. Peripheral sympathectomy alters neuroinflammatory and microglial responses to sleep fragmentation in female mice. Neuroscience. 2022;505:111-124.
  • 38. Haghparast E, Sheibani V, Komeili G, Chahkandi M, Rad NS. The effects of chronic marijuana administration on 6-ohda-induced learning & memory impairment and hippocampal dopamine and cannabinoid receptors interaction in male rats. Neurochem Res. 2023;48(7):2220-2229.
  • 39. Guimarães RP, Ribeiro DL, Dos Santos KB, Godoy LD, Corrêa MR, Padovan-Neto FE. The 6-hydroxydopamine rat model of Parkinson’s disease. J Vis Exp. 2021;(176):10.3791/62923.
  • 40. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279(7):1156-1166.
  • 41. Zeng XS, Geng WS, Jia JJ. Neurotoxin-Induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.
  • 42. Quiroga-Varela A, Aguilar E, Iglesias E, Obeso JA, Marin C. Short- and long-term effects induced by repeated 6-OHDA intraventricular administration: a new progressive and bilateral rodent model of Parkinson’s disease. Neuroscience. 2017;361:144-156.
  • 43. Francardo V. Modeling Parkinson’s disease and treatment complications in rodents: Potentials and pitfalls of the current options. Behav Brain Res. 2018;352:142-150.
  • 44. Grandi LC, Di Giovanni G, Galati S. Reprint of "Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms". J Neurosci Methods. 2018;310:75-88.
  • 45. Kamińska K, Lenda T, Konieczny J, Czarnecka A, Lorenc-Koci E. Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacol Rep. 2017;69(5):985-994.
  • 46. Cagle BS, Sturgeon ML, O’Brien JB et al. Stable expression of the human dopamine transporter in N27 cells as an İn vitro model for dopamine cell trafficking and metabolism. Toxicol In vitro. 2021;76:105210.
  • 47. Okkay IF, Okkay U. Beneficial effects of linagliptin in cell culture model of Parkinson’s disease. Eur Res J. March. 2022;(8)2:242-246.
  • 48. Sezen S, Yesilyurt F, Özkaraca M, et al. Neuroprotective effect of methanol extract of Capparis spinosa L. fruits in an in-vitro experimental model of Parkinson’s disease. J Med Palliat Care. 2022;3(4):341-346.
  • 49. Wu W, Han H, Liu J, et al. Fucoxanthin Prevents 6-OHDA-Induced Neurotoxicity by Targeting Keap1. Oxid Med Cell Longev. 2021;2021:6688708.
  • 50. Riedesel AK, Helgers SOA, Abdulbaki A, et al. Severity assessment of complex and repeated intracranial surgery in rats. Eur Surg Res. 2023;64(1):108-119.
  • 51. Langston JW. The MPTP Story. J Parkinsons Dis. 2017;7(1):11-S19.
  • 52. Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm (Vienna). 2018;125(3):337-363.
  • 53. Dionísio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev. 2021;67:101263.
  • 54. Casanova Y, Negro S, Barcia E. Application of neurotoxin- and pesticide-induced animal models of Parkinson’s disease in the evaluation of new drug delivery systems. Acta Pharm. 2021;72(1):35-58.
  • 55. Ioghen OC, Ceafalan LC, Popescu BO. SH-SY5Y cell line in vitro models for Parkinson disease research-old practice for new trends. J Integr Neurosci. 2023;22(1):20.
  • 56. Kermer P, Köhn A, Schnieder M, et al. BAG1 is neuroprotective in in vivo and in vitro models of Parkinson’s disease. J Mol Neurosci. 2015;55(3):587-595.
  • 57. Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson’s disease in a dish: merits and pitfalls of the most commonly used dopaminergic in vitro models. Neuromolecular Med. 2017;19(2-3):241-255.
  • 58. Sivasubramanian M, Kanagaraj N, Dheen ST, Tay SS. Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+ -treated MN9D cells in vitro. Neuroscience. 2015;290:636-648.
  • 59. Narmashiri A, Abbaszadeh M, Ghazizadeh A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2022;140:104792.
  • 60. Yan J, Sun W, Shen M, et al. Idebenone improves motor dysfunction, learning and memory by regulating mitophagy in MPTP-treated mice. Cell Death Discov. 2022;8(1):28.
  • 61. Ferguson SA, Law CD, Sarkar S. Chronic MPTP treatment produces hyperactivity in male mice which is not alleviated by concurrent trehalose treatment. Behav Brain Res. 2015;292:68-78.
  • 62. Hu S, Hu M, Liu J, et al. Phosphorylation of tau and α-synuclein induced neurodegeneration in MPTP mouse model of parkinson’s disease. Neuropsychiatr Dis Treat. 2020;16:651-663.
  • 63. Mercanti G, Bazzu G, Giusti P. A 6-hydroxydopamine in vivo model of Parkinson's disease. Methods Mol Biol. 2012;846:355-364.
  • 64. Lee KI, Kim MJ, Koh H, et al. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux. Biochem Biophys Res Commun. 2015;462(4):402-408.
  • 65. Goldstein DS, Sullivan P, Cooney A, et al. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease. J Neurochem. 2012;123(6):932-943.
  • 66. Santos JR, Cunha JA, Dierschnabel AL, et al. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behav Brain Res. 2013;253:68-77.
  • 67. de Freitas CM, Busanello A, Schaffer LF, et al. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl). 2016;233(3):457-467.
  • 68. Fernandes VS, Santos JR, Leão AH, et al. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson's disease. Behav Brain Res. 2012;231(1):154-163.
  • 69. Ikram H, Haleem DJ. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson's dementia. Pak J Pharm Sci. 2019;32(2):555-562.
  • 70. Cunha DMG, Becegato M, Meurer YSR, et al. Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. Front Neurosci. 2022;16:923957.
  • 71. Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson's disease: roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol. 2022;13:944376.
  • 72. Leão AH, Meurer YS, da Silva AF, et al. Spontaneously hypertensive rats (shr) are resistant to a reserpine-induced progressive model of Parkinson's disease: differences in motor behavior, tyrosine hydroxylase and α-synuclein expression. Front Aging Neurosci. 2017;9:78.
  • 73. van Onselen R, Downing TG. Neonatal reserpine administration produces widespread neuronal losses and ⍺-synuclein inclusions in a rat model. Neurotox Res. 2021;39(6):1762-1770.
  • 74. Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Kopin IJ, Sharabi Y. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease. J Neurochem. 2015;133(1):14-25.
  • 75. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012. https://www.ncbi.nlm. nih.gov/books/NBK547852/ (accessed 22.04.2024).
  • 76. Vaiman EE, Shnayder NA, Khasanova AK, et al. Pathophysiological Mechanisms of Antipsychotic- Induced Parkinsonism. Biomedicines. 2022;10(8):2010.
  • 77. Kabra A, Baghel US, Hano C, Martins N, Khalid M, Sharma R. Neuroprotective potential of Myrica esulenta in Haloperidol induced Parkinson's disease. J Ayurveda Integr Med. 2020;11(4):448-454.
  • 78. Matthew BJ, Gedzior JS. Drug-induced parkinsonism following chronic methamphetamine use by a patient on haloperidol decanoate. Int J Psychiatry Med. 2015;50(4):405-411.
  • 79. Mandel JS, Adami HO, Cole P. Paraquat and Parkinson's disease: an overview of the epidemiology and a review of two recent studies. Regul Toxicol Pharmacol. 2012;62(2):385-392.
  • 80. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res. 2001;(86)2:122-127.
  • 81. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101-116.
  • 82. Ishola IO, Awogbindin IO, Olubodun-Obadun TG, Olajiga AE, Adeyemi OO. Vinpocetine prevents rotenone-induced Parkinson disease motor and non-motor symptoms through attenuation of oxidative stress, neuroinflammation and α-synuclein expressions in rats. Neurotoxicology. 2023;96:37-52.
  • 83. Innos J, Hickey MA. using rotenone to model Parkinson's disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol. 2021;34(5):1223-1239.
  • 84. Huang M, Bargues-Carot A, Riaz Z, et al. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of Parkinson's disease. Int J Mol Sci. 2022;23(18):10808.
  • 85. Zhao Z, Ning J, Bao XQ, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021;9(1):226.
  • 86. Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat. 2020.
  • 87. Ayaz D, Öncel S, Karadağ E. The effectiveness of educational interventions aimed at agricultural workers' knowledge, behaviour, and risk perception for reducing the risk of pesticide exposure: a systematic review and meta-analysis. Int Arch Occup Environ Health. 2022;95(6):1167-1178.
  • 88. Hugh-Jones ME, Peele RH, Wilson VL. Parkinson's disease in louisiana, 1999-2012: based on hospital primary discharge diagnoses, incidence, and risk in relation to local agricultural crops, pesticides, and aquifer recharge. Int J Environ Res Public Health. 2020;17(5):1584.
  • 89. Li AA, Mink PJ, McIntosh LJ, Teta MJ, Finley B. Evaluation of epidemiologic and animal data associating pesticides with Parkinson's disease. J Occup Environ Med. 2005;47(10):1059-1087.
  • 90. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. Pesticides and Parkinson's disease--is there a link?. Environ Health Perspect. 2006;114(2):156-164.
  • 91. Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011;119(6):866-872.
  • 92. Vaccari C, El Dib R, Gomaa H, Lopes LC, de Camargo JL. Paraquat and Parkinson's disease: a systematic review and meta-analysis of observational studies. J Toxicol Environ Health B Crit Rev. 2019;22(5-6):172-202.
  • 93. Tangamornsuksan W, Lohitnavy O, Sruamsiri R, et al. Paraquat exposure and Parkinson's disease: A systematic review and meta-analysis. Arch Environ Occup Health. 2019;74(5):225-238.
  • 94. Weed DL. Does paraquat cause Parkinson's disease? A review of reviews. Neurotoxicology. 2021;86:180-184.
  • 95. See WZC, Naidu R, Tang KS. Cellular and molecular events leading to paraquat-induced apoptosis: mechanistic insights into Parkinson's disease pathophysiology. Mol Neurobiol. 2022;59(6):3353-3369.
  • 96. Zhao Y, Qin L, Pan H, et al. The role of genetics in Parkinson's disease: a large cohort study in Chinese mainland population. Brain. 2020;143(7):2220-2234.
  • 97. Aryal B, Lee Y. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep. 2019;52(4):250-258.
  • 98. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287(5456):1265-1269.
  • 99. Matsuoka Y, Vila M, Lincoln S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis. 2001;8(3):535-539.
  • 100. Prasad K, Tarasewicz E, Strickland PA, et al. Biochemical and morphological consequences of human α-synuclein expression in a mouse α-synuclein null background. Eur J Neurosci. 2011;33(4):642-656.
  • 101. Li Y, Liu W, Oo TF, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci. 2009;12(7):826-828.
  • 102. Lee BD, Shin JH, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med. 2010;16(9):998-1000.
  • 103. Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson's Disease. Mov Disord. 2018;33(5):717-729.
  • 104. Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell. 2011;144(5):689-702.
  • 105. West AB, Cowell RM, Daher JP, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522(11):2465-2480.
  • 106. Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091-1102.
  • 107. Nabais MF, Laws SM, Lin T, et al. Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biol. 2021;22(1):90.
  • 108. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson's disease. Lancet Neurol. 2020;19(2):170-178.

Parkinson Hastalığında Deneysel Modeller: Avantajlar ve Dezavantajlar

Year 2024, Volume: 2 Issue: 2, 80 - 87, 30.06.2024
https://doi.org/10.61845/agrimedical.1471854

Abstract

Parkinson hastalığı dünya çapında milyonlarca insanı etkileyen kompleks nörodejeneratif bir hastalıktır. Alzheimer hastalığından sonra en sık görülen ikinci nörodejeneratif hastalık olan Parkinson hastalığının insidansı ve prevalansı giderek artmaktadır. Önemli bir halk sağlığı problemi olmasına rağmen, Parkinson hastalığına ilişkin mekanizmalar tam olarak aydınlatılamamıştır. Parkinson hastalığıyla ilişkili mekanizmaların ve tedaviye yönelik araştırmaların temel yaklaşımlarından biri deneysel modellerin kullanılmasıdır. İn vitro ve in vivo modeller, hastalıkla ilişkili moleküler ve hücresel süreçlerin araştırılmasına ve potansiyel tedavilerin test edilmesine olanak sağlamaktadır. Toksin kaynaklı modeller, genetik modeller ve transgenik modeller de dahil olmak üzere, Parkinson hastalığı araştırmalarında her birinin güçlü ve sınırlayıcı yönleri bulunan çeşitli deneysel modeller kullanılmaktadır. Henüz radikal bir tedavisi bulunmayan Parkinson hastalığı araştırmalarında deneysel modeller ön plana çıkmaktadır. Ancak hiçbir deneysel modelin insandaki Parkinson hastalığının tüm yönlerini, tam anlamıyla temsil etmediğini kabul etmek önemlidir. Bu nedenle çalışmalardan elde edilen bulguların farklı test sistemleriyle desteklenmesi ve dikkatle yorumlanması gerekmektedir. Deneysel modeller, Parkinson hastalığının mekanizmasının aydınlatılması ve etkili tedaviler geliştirme arayışında paha biçilmez yöntemlerdir.

References

  • 1. DeMaagd G, Philip A. Parkinson's Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. P T. 2015;40(8):504-532.
  • 2. WHO. 2022 Parkinson’s Disease: Key facts. https://www.who.int/news-room/fact-sheets/detail/ Parkinson-disease (accessed 22.04.2024).
  • 3. Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 2018;109(Pt B):249-257.
  • 4. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548-560.
  • 5. Hayes MT. Parkinson’s disease and Parkinsonism. Am J Med. 2019;132(7):802-807.
  • 6. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284-2303.
  • 7. Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. J Parkinsons Dis. 2018;8(s1):S3-S8.
  • 8. GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939-953.
  • 9. Lampropoulos IC, Malli F, Sinani O, Gourgoulianis KI, Xiromerisiou G. Worldwide trends in mortality related to Parkinson’s disease in the period of 1994-2019: Analysis of vital registration data from the WHO Mortality Database. Front Neurol. 2022;13:956440.
  • 10. Chao Y, Wong SC, Tan EK. Evidence of inflammatory system involvement in Parkinson's disease. Biomed Res Int. 2014;2014:308654.
  • 11. Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808.
  • 12. Reich SG, Savitt JM. Parkinson’s disease. Med Clin North Am. 2019;103(2):337-350.
  • 13. Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 2022;13(3):471.
  • 14. Church FC. Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease. Biomolecules. 2021;11(4):612.
  • 15. Lee TK, Yankee EL. A review on Parkinson’s disease treatment. NN. 2021.
  • 16. Adam H, Gopinath SCB, Md Arshad MK, et al. An update on pathogenesis and clinical scenario for Parkinson’s disease: diagnosis and treatment. 3 Biotech. 2023;13(5):142.
  • 17. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889- 909.
  • 18. Yörük MA, Okkay U, Budak Savaş A. et al. Behavioral Tests Used in Experimental Animal Model, 2022;(3):14-22.
  • 19. Chia SJ, Tan EK, Chao YX. Historical perspective: models of Parkinson’s disease, Int J Mol Sci. 2020;(21):7.
  • 20. Özay Ö, Arslantaş D. Pestisit maruziyeti ve nöropsikiyatrik etkileri / pesticide exposure and neuropsychiatric effects. OJM. 2016;38(1).
  • 21. Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90.
  • 22. Kin K, Yasuhara T, Kameda M, Date I. Animal models for Parkinson’s disease research: trends in the 2000s. Int. J. Mol. Sci. 2019; 20(21):5402.
  • 23. Salari S, Bagheri M. In vivo, in vitro and pharmacologic models of Parkinson’s disease, Physiol Res. 2019;68(1):17-24.
  • 24. Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson’s disease. Comp Biochem Physiol C Toxicol Pharmacol. 2022;252:109213.
  • 25. Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci. 2021;21:422–433.
  • 26. Innos J, Hickey MA. Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol. 2021;34(5):1223-1239.
  • 27. Rocha SM, Bantle CM, Aboellail T, Chatterjee D, Smeyne RJ, Tjalkens RB. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiol Dis. 2022;167:105685.
  • 28. Radad K, Al-Shraim M, Al-Emam A, et al. Rotenone: from modelling to implication in Parkinson’s disease. Folia Neuropathol. 2019;57(4):317-326.
  • 29. Grandi LC, Di Giovanni G, Galati S. Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. J. Neurosci. Methods 2018;(308):205–218.
  • 30. Leão AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: New perspectives to a long-standing model. Brain Pathol. 2015;(25): 377–390.
  • 31. Ostinelli EG, Brooke-Powney MJ, Li X, Adams CE. Haloperidol for psychosis-induced aggression or agitation (rapid tranquillisation). Cochrane Database Syst Rev. 2017;7(7):CD009377.
  • 32. Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci. 2021;53(11):3743-3767.
  • 33. Ferah Okkay I, Okkay U, Cicek B, et al. Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson's disease. Mol Biol Rep. 2021;48(12):7711-7717.
  • 34. Kostrzewa RM. Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna). 2022;129(5-6):445-461.
  • 35. Horvathova L, Padova A, Tillinger A, Osacka J, Bizik J, Mravec B. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress. 2016;(19)5: 528-534.
  • 36. Jiang YH, Jiang H, Yang JL et al. Cardiac dysregulation and myocardial injury in a 6-hydroxydopamine-induced rat model of sympathetic denervation. PLoS One. 2015;(10)7:e0133971.
  • 37. Mishra I, Pullum KB, Eads KN, Strunjas AR, Ashley NT. Peripheral sympathectomy alters neuroinflammatory and microglial responses to sleep fragmentation in female mice. Neuroscience. 2022;505:111-124.
  • 38. Haghparast E, Sheibani V, Komeili G, Chahkandi M, Rad NS. The effects of chronic marijuana administration on 6-ohda-induced learning & memory impairment and hippocampal dopamine and cannabinoid receptors interaction in male rats. Neurochem Res. 2023;48(7):2220-2229.
  • 39. Guimarães RP, Ribeiro DL, Dos Santos KB, Godoy LD, Corrêa MR, Padovan-Neto FE. The 6-hydroxydopamine rat model of Parkinson’s disease. J Vis Exp. 2021;(176):10.3791/62923.
  • 40. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279(7):1156-1166.
  • 41. Zeng XS, Geng WS, Jia JJ. Neurotoxin-Induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.
  • 42. Quiroga-Varela A, Aguilar E, Iglesias E, Obeso JA, Marin C. Short- and long-term effects induced by repeated 6-OHDA intraventricular administration: a new progressive and bilateral rodent model of Parkinson’s disease. Neuroscience. 2017;361:144-156.
  • 43. Francardo V. Modeling Parkinson’s disease and treatment complications in rodents: Potentials and pitfalls of the current options. Behav Brain Res. 2018;352:142-150.
  • 44. Grandi LC, Di Giovanni G, Galati S. Reprint of "Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms". J Neurosci Methods. 2018;310:75-88.
  • 45. Kamińska K, Lenda T, Konieczny J, Czarnecka A, Lorenc-Koci E. Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacol Rep. 2017;69(5):985-994.
  • 46. Cagle BS, Sturgeon ML, O’Brien JB et al. Stable expression of the human dopamine transporter in N27 cells as an İn vitro model for dopamine cell trafficking and metabolism. Toxicol In vitro. 2021;76:105210.
  • 47. Okkay IF, Okkay U. Beneficial effects of linagliptin in cell culture model of Parkinson’s disease. Eur Res J. March. 2022;(8)2:242-246.
  • 48. Sezen S, Yesilyurt F, Özkaraca M, et al. Neuroprotective effect of methanol extract of Capparis spinosa L. fruits in an in-vitro experimental model of Parkinson’s disease. J Med Palliat Care. 2022;3(4):341-346.
  • 49. Wu W, Han H, Liu J, et al. Fucoxanthin Prevents 6-OHDA-Induced Neurotoxicity by Targeting Keap1. Oxid Med Cell Longev. 2021;2021:6688708.
  • 50. Riedesel AK, Helgers SOA, Abdulbaki A, et al. Severity assessment of complex and repeated intracranial surgery in rats. Eur Surg Res. 2023;64(1):108-119.
  • 51. Langston JW. The MPTP Story. J Parkinsons Dis. 2017;7(1):11-S19.
  • 52. Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm (Vienna). 2018;125(3):337-363.
  • 53. Dionísio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev. 2021;67:101263.
  • 54. Casanova Y, Negro S, Barcia E. Application of neurotoxin- and pesticide-induced animal models of Parkinson’s disease in the evaluation of new drug delivery systems. Acta Pharm. 2021;72(1):35-58.
  • 55. Ioghen OC, Ceafalan LC, Popescu BO. SH-SY5Y cell line in vitro models for Parkinson disease research-old practice for new trends. J Integr Neurosci. 2023;22(1):20.
  • 56. Kermer P, Köhn A, Schnieder M, et al. BAG1 is neuroprotective in in vivo and in vitro models of Parkinson’s disease. J Mol Neurosci. 2015;55(3):587-595.
  • 57. Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson’s disease in a dish: merits and pitfalls of the most commonly used dopaminergic in vitro models. Neuromolecular Med. 2017;19(2-3):241-255.
  • 58. Sivasubramanian M, Kanagaraj N, Dheen ST, Tay SS. Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+ -treated MN9D cells in vitro. Neuroscience. 2015;290:636-648.
  • 59. Narmashiri A, Abbaszadeh M, Ghazizadeh A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2022;140:104792.
  • 60. Yan J, Sun W, Shen M, et al. Idebenone improves motor dysfunction, learning and memory by regulating mitophagy in MPTP-treated mice. Cell Death Discov. 2022;8(1):28.
  • 61. Ferguson SA, Law CD, Sarkar S. Chronic MPTP treatment produces hyperactivity in male mice which is not alleviated by concurrent trehalose treatment. Behav Brain Res. 2015;292:68-78.
  • 62. Hu S, Hu M, Liu J, et al. Phosphorylation of tau and α-synuclein induced neurodegeneration in MPTP mouse model of parkinson’s disease. Neuropsychiatr Dis Treat. 2020;16:651-663.
  • 63. Mercanti G, Bazzu G, Giusti P. A 6-hydroxydopamine in vivo model of Parkinson's disease. Methods Mol Biol. 2012;846:355-364.
  • 64. Lee KI, Kim MJ, Koh H, et al. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux. Biochem Biophys Res Commun. 2015;462(4):402-408.
  • 65. Goldstein DS, Sullivan P, Cooney A, et al. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease. J Neurochem. 2012;123(6):932-943.
  • 66. Santos JR, Cunha JA, Dierschnabel AL, et al. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behav Brain Res. 2013;253:68-77.
  • 67. de Freitas CM, Busanello A, Schaffer LF, et al. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl). 2016;233(3):457-467.
  • 68. Fernandes VS, Santos JR, Leão AH, et al. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson's disease. Behav Brain Res. 2012;231(1):154-163.
  • 69. Ikram H, Haleem DJ. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson's dementia. Pak J Pharm Sci. 2019;32(2):555-562.
  • 70. Cunha DMG, Becegato M, Meurer YSR, et al. Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. Front Neurosci. 2022;16:923957.
  • 71. Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson's disease: roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol. 2022;13:944376.
  • 72. Leão AH, Meurer YS, da Silva AF, et al. Spontaneously hypertensive rats (shr) are resistant to a reserpine-induced progressive model of Parkinson's disease: differences in motor behavior, tyrosine hydroxylase and α-synuclein expression. Front Aging Neurosci. 2017;9:78.
  • 73. van Onselen R, Downing TG. Neonatal reserpine administration produces widespread neuronal losses and ⍺-synuclein inclusions in a rat model. Neurotox Res. 2021;39(6):1762-1770.
  • 74. Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Kopin IJ, Sharabi Y. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease. J Neurochem. 2015;133(1):14-25.
  • 75. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012. https://www.ncbi.nlm. nih.gov/books/NBK547852/ (accessed 22.04.2024).
  • 76. Vaiman EE, Shnayder NA, Khasanova AK, et al. Pathophysiological Mechanisms of Antipsychotic- Induced Parkinsonism. Biomedicines. 2022;10(8):2010.
  • 77. Kabra A, Baghel US, Hano C, Martins N, Khalid M, Sharma R. Neuroprotective potential of Myrica esulenta in Haloperidol induced Parkinson's disease. J Ayurveda Integr Med. 2020;11(4):448-454.
  • 78. Matthew BJ, Gedzior JS. Drug-induced parkinsonism following chronic methamphetamine use by a patient on haloperidol decanoate. Int J Psychiatry Med. 2015;50(4):405-411.
  • 79. Mandel JS, Adami HO, Cole P. Paraquat and Parkinson's disease: an overview of the epidemiology and a review of two recent studies. Regul Toxicol Pharmacol. 2012;62(2):385-392.
  • 80. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res. 2001;(86)2:122-127.
  • 81. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101-116.
  • 82. Ishola IO, Awogbindin IO, Olubodun-Obadun TG, Olajiga AE, Adeyemi OO. Vinpocetine prevents rotenone-induced Parkinson disease motor and non-motor symptoms through attenuation of oxidative stress, neuroinflammation and α-synuclein expressions in rats. Neurotoxicology. 2023;96:37-52.
  • 83. Innos J, Hickey MA. using rotenone to model Parkinson's disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol. 2021;34(5):1223-1239.
  • 84. Huang M, Bargues-Carot A, Riaz Z, et al. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of Parkinson's disease. Int J Mol Sci. 2022;23(18):10808.
  • 85. Zhao Z, Ning J, Bao XQ, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021;9(1):226.
  • 86. Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat. 2020.
  • 87. Ayaz D, Öncel S, Karadağ E. The effectiveness of educational interventions aimed at agricultural workers' knowledge, behaviour, and risk perception for reducing the risk of pesticide exposure: a systematic review and meta-analysis. Int Arch Occup Environ Health. 2022;95(6):1167-1178.
  • 88. Hugh-Jones ME, Peele RH, Wilson VL. Parkinson's disease in louisiana, 1999-2012: based on hospital primary discharge diagnoses, incidence, and risk in relation to local agricultural crops, pesticides, and aquifer recharge. Int J Environ Res Public Health. 2020;17(5):1584.
  • 89. Li AA, Mink PJ, McIntosh LJ, Teta MJ, Finley B. Evaluation of epidemiologic and animal data associating pesticides with Parkinson's disease. J Occup Environ Med. 2005;47(10):1059-1087.
  • 90. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. Pesticides and Parkinson's disease--is there a link?. Environ Health Perspect. 2006;114(2):156-164.
  • 91. Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011;119(6):866-872.
  • 92. Vaccari C, El Dib R, Gomaa H, Lopes LC, de Camargo JL. Paraquat and Parkinson's disease: a systematic review and meta-analysis of observational studies. J Toxicol Environ Health B Crit Rev. 2019;22(5-6):172-202.
  • 93. Tangamornsuksan W, Lohitnavy O, Sruamsiri R, et al. Paraquat exposure and Parkinson's disease: A systematic review and meta-analysis. Arch Environ Occup Health. 2019;74(5):225-238.
  • 94. Weed DL. Does paraquat cause Parkinson's disease? A review of reviews. Neurotoxicology. 2021;86:180-184.
  • 95. See WZC, Naidu R, Tang KS. Cellular and molecular events leading to paraquat-induced apoptosis: mechanistic insights into Parkinson's disease pathophysiology. Mol Neurobiol. 2022;59(6):3353-3369.
  • 96. Zhao Y, Qin L, Pan H, et al. The role of genetics in Parkinson's disease: a large cohort study in Chinese mainland population. Brain. 2020;143(7):2220-2234.
  • 97. Aryal B, Lee Y. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep. 2019;52(4):250-258.
  • 98. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287(5456):1265-1269.
  • 99. Matsuoka Y, Vila M, Lincoln S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis. 2001;8(3):535-539.
  • 100. Prasad K, Tarasewicz E, Strickland PA, et al. Biochemical and morphological consequences of human α-synuclein expression in a mouse α-synuclein null background. Eur J Neurosci. 2011;33(4):642-656.
  • 101. Li Y, Liu W, Oo TF, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci. 2009;12(7):826-828.
  • 102. Lee BD, Shin JH, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med. 2010;16(9):998-1000.
  • 103. Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson's Disease. Mov Disord. 2018;33(5):717-729.
  • 104. Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell. 2011;144(5):689-702.
  • 105. West AB, Cowell RM, Daher JP, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522(11):2465-2480.
  • 106. Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091-1102.
  • 107. Nabais MF, Laws SM, Lin T, et al. Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biol. 2021;22(1):90.
  • 108. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson's disease. Lancet Neurol. 2020;19(2):170-178.
There are 108 citations in total.

Details

Primary Language English
Subjects Neurosciences (Other)
Journal Section Review Article
Authors

Öznur Altunlu 0000-0003-3192-3118

Esma Topatan 0009-0007-0420-216X

Ziadoon Al-yaqoobi 0000-0003-4691-728X

Feyza Burul 0009-0002-2193-1106

Cemil Bayram 0000-0001-8940-8560

Selma Sezen 0000-0001-6575-6149

Irmak Ferah Okkay 0000-0001-8836-9547

Ufuk Okkay 0000-0002-2871-0712

Ahmet Hacımüftüoğlu 0000-0002-9658-3313

Publication Date June 30, 2024
Submission Date April 25, 2024
Acceptance Date May 29, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

AMA Altunlu Ö, Topatan E, Al-yaqoobi Z, Burul F, Bayram C, Sezen S, Ferah Okkay I, Okkay U, Hacımüftüoğlu A. Experimental Models in Parkinson’s Disease: Advantages and Disadvantages. Ağrı Med J. June 2024;2(2):80-87. doi:10.61845/agrimedical.1471854