Review
BibTex RIS Cite

VEGF165a and VEGF165b: Molecular effects of opposing isoforms in angiogenesis

Year 2025, Volume: 3 Issue: 3, 147 - 155, 29.10.2025
https://doi.org/10.61845/agrimedical.1684066

Abstract

This review aims to comparatively examine the structural differences, receptor interactions, downstream signaling effects, and pathophysiological roles of the two main isoforms of the VEGFA gene, VEGF165a and VEGF165b, which arise from alternative splicing of exon 8. Recent experimental and clinical studies conducted between 2020 and 2025 in both human and animal models were systematically reviewed to evaluate the biological functions, receptor-binding properties, and pro- and anti-angiogenic effects of VEGF165b. VEGF165a promotes endothelial cell proliferation, migration, and vascular permeability by activating VEGFR-2 through PI3K/Akt and MAPK/ERK pathways. In contrast, VEGF165b binds to the same receptors but induces weak signaling and competitively inhibits the effects of VEGF165a. While VEGF165b is predominantly expressed in healthy tissues, a shift in favor of VEGF165a is observed in pathological conditions such as cancer, proliferative diabetic retinopathy, and age-related macular degeneration. Conversely, excessive VEGF165b expression is associated with impaired angiogenesis in diseases such as peripheral artery disease, systemic sclerosis, and preeclampsia. Disruption in the VEGF165 isoform balance underlies many diseases characterized by either excessive or insufficient angiogenesis. In this context, isoform-specific therapeutic strategies—such as the modulation of alternative exon usage via splice-switching oligonucleotides—may allow the development of more precise and targeted vascular therapies in the future. The VEGF165a/VEGF165b ratio also holds promise as a biomarker for guiding personalized angiogenesis-modulating treatments.

Ethical Statement

This article is a literature-based review and does not involve human participants or animal experiments; therefore, ethical approval was not required.

References

  • Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-67.
  • Teran M. Modulation of vascular endothelial growth factor receptor affinity by neuropilin-1 and heparan sulfate proteoglycans 2016.
  • Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical science. 2005;109(3):227-41.
  • Guo Y-J, Pan W-W, Liu S-B, Shen Z-F, Xu Y, Hu L-L. ERK/MAPK signalling pathway and tumorigenesis. Experimental and therapeutic medicine. 2020;19(3):1997-2007.
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248-64.
  • Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, et al. Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine. International journal of molecular sciences. 2021;22(4):1631.
  • Bates DO, Cui T-G, Doughty JM, Winkler M, Sugiono M, Shields JD, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer research. 2002;62(14):4123-31.
  • Woolard J, Wang W-Y, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer research. 2004;64(21):7822-35.
  • Raja A, Ganta V. Synthetic Antiangiogenic Vascular Endothelial Growth Factor—A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease. Journal of the American Heart Association. 2024;13(20):e034304.
  • Melo CFOR, Navarro LC, De Oliveira DN, Guerreiro TM, Lima EdO, Delafiori J, et al. A machine learning application based in random forest for integrating mass spectrometry-based metabolomic data: a simple screening method for patients with Zika virus. Frontiers in bioengineering and biotechnology. 2018;6:31.
  • Parker MW, Xu P, Li X, Vander Kooi CW. Structural basis for selective vascular endothelial growth factor-A (VEGFA) binding to neuropilin-1. Journal of Biological Chemistry. 2012;287(14):11082-9.
  • Ganta VC, Choi M, Kutateladze A, Annex BH. VEGF165b modulates endothelial VEGFR1–STAT3 signaling pathway and angiogenesis in human and experimental peripheral arterial disease. Circulation research. 2017;120(2):282-95.
  • Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nature medicine. 2003;9(6):669-76.
  • Peiris-Pagès M. The role of VEGF165b in pathophysiology. Cell adhesion & migration. 2012;6(6):561-8.
  • Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Frontiers in Cell and Developmental Biology. 2020;8:599281.
  • Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. Molecular pharmacology of VEGFA isoforms: binding and signalling at VEGFR2. International journal of molecular sciences. 2018;19(4):1264.
  • Batlle R, Andrés E, Gonzalez L, Llonch E, Igea A, Gutierrez-Prat N, et al. Regulation of tumor angiogenesis and mesenchymal–endothelial transition by p38α through TGF-β and JNK signaling. Nature communications. 2019;10(1):3071.
  • Bates DO, Catalano PJ, Symonds KE, Varey AH, Ramani P, O'Dwyer PJ, et al. Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clinical Cancer Research. 2012;18(22):6384-91.
  • Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nature Reviews Cancer. 2002;2(10):795-803.
  • Varey A, Rennel E, Qiu Y, Bevan H, Perrin R, Raffy S, et al. VEGF165b, an antiangiogenic VEGFA isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro-and antiangiogenic VEGFA isoforms has implications for therapy. British journal of cancer. 2008;98(8):1366-79.
  • Karsten MM, Beck MH, Rademacher A, Knabl J, Blohmer J-U, Jückstock J, et al. VEGFA165b levels are reduced in breast cancer patients at primary diagnosis but increase after completion of cancer treatment. Scientific reports. 2020;10(1):3635.
  • Catena R, Larzabal L, Larrayoz M, Molina E, Hermida J, Agorreta J, et al. VEGF 121 b and VEGF 165 b are weakly angiogenic isoforms of VEGFA. Molecular cancer. 2010;9:1-14.
  • Jiang F, Chong L, Du S, Duan Y, Wang Y, Wang J, et al. Decreased ratio of VEGF165b/VEGF in aqueous humor predicts progression of diabetic retinopathy. Ophthalmic Research. 2020;63(6):517-23.
  • Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs in context. 2018;7:212532.
  • Amadio M, Govoni S, Pascale A. Targeting VEGF in eye neovascularization: What's new?: A comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacological research. 2016;103:253-69.
  • Campochiaro PA. Ocular neovascularization. Journal of molecular medicine. 2013;91:311-21.
  • Kilic Ü, Kilic E, Järve A, Guo Z, Spudich A, Bieber K, et al. Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. Journal of Neuroscience. 2006;26(48):12439-46.
  • Manetti M, Guiducci S, Romano E, Ceccarelli C, Bellando-Randone S, Conforti ML, et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circulation research. 2011;109(3):e14-e26.
  • Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, et al. Expression of pro-and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. Journal of cell science. 2008;121(20):3487-95.
  • Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Impaired angiogenesis in systemic sclerosis: the emerging role of the antiangiogenic VEGF165b splice variant. Trends in cardiovascular medicine. 2011;21(7):204-10.
  • Guiducci S, Distler O, Distler J, Matucci-Cerinic M. Mechanisms of vascular damage in SSc—implications for vascular treatment strategies. Rheumatology. 2008;47(suppl_5):v18-v20.
  • Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G, et al. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. Journal of Biological Chemistry. 2010;285(8):5532-40.
  • Levine RJ, Maynard SE, Qian C, Lim K-H, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. New England journal of medicine. 2004;350(7):672-83.
  • Bills VL, Hamdollah-Zadeh M, Soothill PW, Harper SJ, Bates DO. The role of VEGFA 165 b in trophoblast survival. BMC Pregnancy and Childbirth. 2014;14:1-8.
  • Rennel ES, Harper SJ, Bates DO. Therapeutic potential of manipulating VEGF splice isoforms in oncology. Future Oncology. 2009;5(5):703-12.
  • Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nature reviews Drug discovery. 2016;15(6):385-403.
  • Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D'Amore PA. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proceedings of the National Academy of Sciences. 2009;106(44):18751-6.
  • Harper SJ, Bates DO. VEGFA splicing: the key to anti-angiogenic therapeutics? Nature Reviews Cancer. 2008;8(11):880-7.
  • Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic acids research. 2016;44(14):6549-63.

VEGF165a ve VEGF165b: Anjiyogenezde zıt izoformların moleküler etkileri

Year 2025, Volume: 3 Issue: 3, 147 - 155, 29.10.2025
https://doi.org/10.61845/agrimedical.1684066

Abstract

Bu derleme, VEGFA geninin alternatif ekzon 8 bölgesinden türeyen iki ana izoformu olan VEGF165a ve VEGF165b’nin yapısal farklılıklarını, reseptör etkileşimlerini, sinyal yolakları üzerindeki etkilerini ve bu izoformların hastalıklardaki patofizyolojik rollerini karşılaştırmalı olarak incelemeyi amaçlamaktadır. İnsan ve hayvan modellerinde yapılan deneysel ve klinik çalışmalara ait 2020–2025 yılları arasındaki güncel literatür taranmış, VEGF165b’nin biyolojik işlevleri, reseptör bağlanma özellikleri, pro- ve anti-anjiyogenik etkileri ile ilgili bulgular sistematik olarak derlenmiştir. VEGF165a, VEGFR-2 üzerinden PI3K/Akt ve MAPK/ERK yolaklarını aktive ederek endotel hücre proliferasyonu, göçü ve damar geçirgenliğini artırırken; VEGF165b bu reseptörlere bağlanmasına rağmen sinyallemeyi zayıf biçimde tetiklemekte ve VEGF165a’nın etkilerini kompetitif olarak baskılamaktadır. VEGF165b ekspresyonu sağlıklı dokularda baskın iken, kanser, proliferatif diyabetik retinopati ve yaşa bağlı makula dejenerasyonu gibi hastalıklarda VEGF165a lehine bir dengesizlik gözlenmektedir. Öte yandan, periferik arter hastalığı, sistemik skleroz ve preeklampsi gibi durumlarda VEGF165b’nin aşırı ekspresyonu yetersiz anjiyogenez ile ilişkilidir. VEGF165 izoform dengesindeki bozulmalar, anjiyogenez fazlalığı ya da yetersizliği ile seyreden birçok hastalığın temelinde yer almaktadır. Bu bağlamda, izoformlara özgü tedavi yaklaşımları (örneğin splice-switching oligonükleotidlerle alternatif ekson kullanımının yönlendirilmesi) gelecekte daha hassas ve hedefe yönelik damar tedavileri geliştirilmesine olanak sağlayabilir. VEGF165a/VEGF165b oranının biyobelirteç olarak kullanımı, kişiye özel anjiyogenez modülasyonuna yönelik önemli bir potansiyel taşımaktadır.

References

  • Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-67.
  • Teran M. Modulation of vascular endothelial growth factor receptor affinity by neuropilin-1 and heparan sulfate proteoglycans 2016.
  • Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical science. 2005;109(3):227-41.
  • Guo Y-J, Pan W-W, Liu S-B, Shen Z-F, Xu Y, Hu L-L. ERK/MAPK signalling pathway and tumorigenesis. Experimental and therapeutic medicine. 2020;19(3):1997-2007.
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248-64.
  • Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, et al. Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine. International journal of molecular sciences. 2021;22(4):1631.
  • Bates DO, Cui T-G, Doughty JM, Winkler M, Sugiono M, Shields JD, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer research. 2002;62(14):4123-31.
  • Woolard J, Wang W-Y, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer research. 2004;64(21):7822-35.
  • Raja A, Ganta V. Synthetic Antiangiogenic Vascular Endothelial Growth Factor—A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease. Journal of the American Heart Association. 2024;13(20):e034304.
  • Melo CFOR, Navarro LC, De Oliveira DN, Guerreiro TM, Lima EdO, Delafiori J, et al. A machine learning application based in random forest for integrating mass spectrometry-based metabolomic data: a simple screening method for patients with Zika virus. Frontiers in bioengineering and biotechnology. 2018;6:31.
  • Parker MW, Xu P, Li X, Vander Kooi CW. Structural basis for selective vascular endothelial growth factor-A (VEGFA) binding to neuropilin-1. Journal of Biological Chemistry. 2012;287(14):11082-9.
  • Ganta VC, Choi M, Kutateladze A, Annex BH. VEGF165b modulates endothelial VEGFR1–STAT3 signaling pathway and angiogenesis in human and experimental peripheral arterial disease. Circulation research. 2017;120(2):282-95.
  • Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nature medicine. 2003;9(6):669-76.
  • Peiris-Pagès M. The role of VEGF165b in pathophysiology. Cell adhesion & migration. 2012;6(6):561-8.
  • Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Frontiers in Cell and Developmental Biology. 2020;8:599281.
  • Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. Molecular pharmacology of VEGFA isoforms: binding and signalling at VEGFR2. International journal of molecular sciences. 2018;19(4):1264.
  • Batlle R, Andrés E, Gonzalez L, Llonch E, Igea A, Gutierrez-Prat N, et al. Regulation of tumor angiogenesis and mesenchymal–endothelial transition by p38α through TGF-β and JNK signaling. Nature communications. 2019;10(1):3071.
  • Bates DO, Catalano PJ, Symonds KE, Varey AH, Ramani P, O'Dwyer PJ, et al. Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clinical Cancer Research. 2012;18(22):6384-91.
  • Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nature Reviews Cancer. 2002;2(10):795-803.
  • Varey A, Rennel E, Qiu Y, Bevan H, Perrin R, Raffy S, et al. VEGF165b, an antiangiogenic VEGFA isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro-and antiangiogenic VEGFA isoforms has implications for therapy. British journal of cancer. 2008;98(8):1366-79.
  • Karsten MM, Beck MH, Rademacher A, Knabl J, Blohmer J-U, Jückstock J, et al. VEGFA165b levels are reduced in breast cancer patients at primary diagnosis but increase after completion of cancer treatment. Scientific reports. 2020;10(1):3635.
  • Catena R, Larzabal L, Larrayoz M, Molina E, Hermida J, Agorreta J, et al. VEGF 121 b and VEGF 165 b are weakly angiogenic isoforms of VEGFA. Molecular cancer. 2010;9:1-14.
  • Jiang F, Chong L, Du S, Duan Y, Wang Y, Wang J, et al. Decreased ratio of VEGF165b/VEGF in aqueous humor predicts progression of diabetic retinopathy. Ophthalmic Research. 2020;63(6):517-23.
  • Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs in context. 2018;7:212532.
  • Amadio M, Govoni S, Pascale A. Targeting VEGF in eye neovascularization: What's new?: A comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacological research. 2016;103:253-69.
  • Campochiaro PA. Ocular neovascularization. Journal of molecular medicine. 2013;91:311-21.
  • Kilic Ü, Kilic E, Järve A, Guo Z, Spudich A, Bieber K, et al. Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. Journal of Neuroscience. 2006;26(48):12439-46.
  • Manetti M, Guiducci S, Romano E, Ceccarelli C, Bellando-Randone S, Conforti ML, et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circulation research. 2011;109(3):e14-e26.
  • Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, et al. Expression of pro-and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. Journal of cell science. 2008;121(20):3487-95.
  • Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Impaired angiogenesis in systemic sclerosis: the emerging role of the antiangiogenic VEGF165b splice variant. Trends in cardiovascular medicine. 2011;21(7):204-10.
  • Guiducci S, Distler O, Distler J, Matucci-Cerinic M. Mechanisms of vascular damage in SSc—implications for vascular treatment strategies. Rheumatology. 2008;47(suppl_5):v18-v20.
  • Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G, et al. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. Journal of Biological Chemistry. 2010;285(8):5532-40.
  • Levine RJ, Maynard SE, Qian C, Lim K-H, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. New England journal of medicine. 2004;350(7):672-83.
  • Bills VL, Hamdollah-Zadeh M, Soothill PW, Harper SJ, Bates DO. The role of VEGFA 165 b in trophoblast survival. BMC Pregnancy and Childbirth. 2014;14:1-8.
  • Rennel ES, Harper SJ, Bates DO. Therapeutic potential of manipulating VEGF splice isoforms in oncology. Future Oncology. 2009;5(5):703-12.
  • Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nature reviews Drug discovery. 2016;15(6):385-403.
  • Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D'Amore PA. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proceedings of the National Academy of Sciences. 2009;106(44):18751-6.
  • Harper SJ, Bates DO. VEGFA splicing: the key to anti-angiogenic therapeutics? Nature Reviews Cancer. 2008;8(11):880-7.
  • Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic acids research. 2016;44(14):6549-63.
There are 39 citations in total.

Details

Primary Language English
Subjects Immunology (Other)
Journal Section Review Article
Authors

Funda Çimen Açıkgül 0000-0002-8904-1444

Seçil Nazife Parlak 0000-0001-9577-986X

Publication Date October 29, 2025
Submission Date April 25, 2025
Acceptance Date October 3, 2025
Published in Issue Year 2025 Volume: 3 Issue: 3

Cite

AMA Çimen Açıkgül F, Parlak SN. VEGF165a and VEGF165b: Molecular effects of opposing isoforms in angiogenesis. Ağrı Med J. October 2025;3(3):147-155. doi:10.61845/agrimedical.1684066