Research Article
BibTex RIS Cite

Field Investigations of Clay and Iron-Bearing Mineral Anomalies Detected from Landsat-8 Imagery along the Northern Crater Rim of the Nemrut Caldera (Tatvan, Bitlis)

Year 2025, Volume: 8 Issue: 1, 157 - 165, 31.12.2025

Abstract

The Nemrut Caldera, Türkiye’s largest crater lake, lies between Tatvan, Ahlat, and Güroymak (Bitlis) on the western margin of Lake Van. Geological and morphological features formed by Quaternary volcanism define the structure of the caldera. This study investigates hydrothermal alteration signatures by identifying alteration-related rocks and exposures through Remote Sensing analyses. Landsat-8 imagery dated 21 July 2021 was pre-processed to extract anomaly values associated with clay and iron-bearing minerals. Field observations and limited sampling were conducted in anomaly-dense zones along the northern and northeastern crater rim. Due to the steep morphology of the rim and the caldera’s status as a nature park, sampling was restricted to three hand-sized specimens collected from identifiable debris blocks. X-ray Diffraction (XRD) analyses performed at the Eskişehir Technical University Materials Science and Engineering Laboratory revealed the presence of albite and ferrosilite. These results corroborate the Remote Sensing-based anomaly detections with geological and geochemical evidence.

References

  • Amara, B. N., Aissa, D. E., Maouche, S., Braham, M., Machane, D., & Guessoum, N. (2019). Hydrothermal Alteration Mapping and Structural Features in The Guelma Basin (Northeastern Algeria): Contribution of Landsat-8 Data. Arabian Journal of Geosciences, 12(3), 94-94.
  • Armbruster, T., H.B. BuÄrgi, M. Kunz, E. Gnos, S. BrÄonnimann, and C. Lienert (1990).Variation of Displacement Parameters in Structure Re¯Nements of Low Albite. Amer. Mineral., 75, 135{140.
  • Avdan, U., & Jovanovska, G. (2016). Algorithm For Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016.
  • Calvin, W. M., Littlefield, E. F., & Kratt, C. (2015). Remote Sensing Of Geothermal-Related Minerals For Resource Exploration in Nevada. Geothermics, 53, 517-526.
  • Crosta, A. P., Sabine, C., & Taranik, J. V. (1998). Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data. Remote Sensing of Environment, 65(3), 309-319.
  • Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using ASTER Imagery and Principal Component Analysis. International journal of Remote sensing, 24(21), 4233-4240.
  • Drury, S. A., & Hunt, G. A. (1989). Geological Uses of Remotely-Sensed Reflected and Emitted Data Of Lateritized Archaean Terrain in Western Australia. International Journal of Remote Sensing, 10(3), 475-497.
  • Çağlayan, M. A., & Şengün, M. (2002). 1/100.000 Ölçekli, Açınsama Nitelikli Türkiye Jeoloji Haritaları, No: 66. Van-L48 Paftası, Jeoloji Etütleri Dairesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Çubukçu, H. E., Ulusoy, İ., Aydar, E., Ersoy, O., Şen, E., Gourgaud, A., & Guillou, H. (2012). Mt. Nemrut Volcano (Eastern Turkey): Temporal Petrological Evolution. Journal of Volcanology and Geothermal Research, 209, 33-60.
  • Deer, W.A., R.A. Howie, & J. Zussman (1978). Rock-Forming Minerals, (2nd edition), v. 2A, single-chain silicates, 20{161.
  • Frutuoso, R., Lima, A., & Teodoro, A. C. (2021). Application of Remote Sensing Data in Gold Exploration: Targeting Hydrothermal Alteration Using Landsat 8 İmagery İn Northern Portugal. Arabian Journal of Geosciences, 14(6), 1-18.
  • Gong, P., Niu, Z., Cheng, X., Zhao, K., Zhou, D., Guo, J., ... & Yan, J. (2010). China’s Wetland Change (1990–2000) Determined By Remote Sensing. Science China Earth Sciences, 53(7), 1036-1042.
  • Imanian, A., Tangestani, M. H., & Asadi, A. (2019). Investigation of Spectral Characteristics of Carbonate Rocks–A Case Study on Posht Moleh Mount in Iran.
  • Han, T., & Nelson, J. (2014). Mapping Hydrothermally Altered Rocks With Landsat 8 imagery: A Case Study in The KSM And Snowfield Zones, Northwestern British Columbia. Geological Fieldwork, 103-112.
  • Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristóbal, J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843.
  • Niu, X., & Li, Y. (2020). Remote Sensing Evaluation of Ecological Environment of Anqing City Based on Remote Sensing Ecological Index. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 733-737.
  • Pour, A. B., & Hashim, M. (2015). Hydrothermal Alteration Mapping From Landsat-8 Data, Sar Cheshmeh Copper Mining District, South-Eastern Islamic Republic Of Iran. Journal of Taibah University for Science, 9(2), 155-166.
  • Pour, A. B., Hashim, M., Park, Y., & Hong, J. K. (2018). Mapping Alteration Mineral Zones And Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International, 33(12), 1281-1306.
  • Wu, W. T., Zhou, Y. X., & Tian, B. (2017). Coastal Wetlands Facing Climate Change and Anthropogenic Activities: A Remote Sensing Analysis And Modelling Application. Ocean & Coastal Management, 138, 1-10.
  • van der Meer, F. D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C. A., Bakker, W. H., Noomen, M. F., ... & Woldai, T. (2012). Multi-and Hyperspectral Geologic Remote Sensing: A Review. International journal of applied Earth observation and geoinformation, 14(1), 112-128.
  • van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., & Wechsler, C. (2014). Geologic Remote Sensing For Geothermal Exploration: A Review. International journal of applied earth observation and geoinformation, 33, 255-269.
  • Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., ... & Dickinson, R. (2013). The Role of Satellite Remote Sensing in Climate Change Studies. Nature climate change, 3(10), 875-883.

Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları

Year 2025, Volume: 8 Issue: 1, 157 - 165, 31.12.2025

Abstract

Türkiye’ nin en büyük krater gölü olan Nemrut Kalderası, Van Gölü’ nün batı kıyısında Tatvan-Ahlat-Güroymak (Bitlis) arasında konumlanmaktadır. Kuvaterner volkanizmasının ürünü olan jeolojik ve morfolojik yapılar krater gölünün yapısını şekillendirmiştir. Volkanik süreçler boyunca gelişmiş olması muhtemel alterasyon ürünü kayaçları ve mostraları Uzaktan Algılama ortamında keşfetmeye çalışmak bu çalışmanın çatısını oluşturmaktadır. Yüzey araştırmalarında, literatürde yaygın bir kullanıma sahip Landsat-8 uydu görüntülerinden faydalanılmıştır. Görüntü ön-işlemeleri yapılan 21.07.2021 tarihli görüntüden hidrotermal alterasyonla ilişkili olması muhtemel kil ve demirli minerallere ait anomali değerleri çıkartılmıştır. Krater gölünün kuzey, kuzeydoğu çeperlerinde yoğunluk kazanan anomali değerlerinin bulunduğu alanda jeolojik gözlem ve kaya örnekleme çalışmaları yürütülmüştür. Krater çeperinin yüksek eğimli morfolojisi, çalışmanın ana hedefi ve Nemrut Kalderası’ nın bir tabiat parkı potansiyelinde olması göz önünde bulundurularak; kaya örnekleme çalışmaları çeperden geldiği belirgin olarak gözlenen döküntü bloklardan alınan el büyüklüğünde 3 adet numuneyle sınırlandırılmıştır. Sahadan alınan numuneler Eskişehir Teknik Üniversitesi Malzeme Bilimi ve Mühendisliği Laboratuvarında, XRD analizine tabi tutularak sonuçları yorumlanmıştır. Analiz sonuçlarında gözlenen albit ve ferrosilit mineralleri Uzaktan Algılama tabanında belirlenen anomali alanlarının jeolojik ve jeokimyasal çalışmalarla da desteklendiğini göstermektedir.

References

  • Amara, B. N., Aissa, D. E., Maouche, S., Braham, M., Machane, D., & Guessoum, N. (2019). Hydrothermal Alteration Mapping and Structural Features in The Guelma Basin (Northeastern Algeria): Contribution of Landsat-8 Data. Arabian Journal of Geosciences, 12(3), 94-94.
  • Armbruster, T., H.B. BuÄrgi, M. Kunz, E. Gnos, S. BrÄonnimann, and C. Lienert (1990).Variation of Displacement Parameters in Structure Re¯Nements of Low Albite. Amer. Mineral., 75, 135{140.
  • Avdan, U., & Jovanovska, G. (2016). Algorithm For Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016.
  • Calvin, W. M., Littlefield, E. F., & Kratt, C. (2015). Remote Sensing Of Geothermal-Related Minerals For Resource Exploration in Nevada. Geothermics, 53, 517-526.
  • Crosta, A. P., Sabine, C., & Taranik, J. V. (1998). Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data. Remote Sensing of Environment, 65(3), 309-319.
  • Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using ASTER Imagery and Principal Component Analysis. International journal of Remote sensing, 24(21), 4233-4240.
  • Drury, S. A., & Hunt, G. A. (1989). Geological Uses of Remotely-Sensed Reflected and Emitted Data Of Lateritized Archaean Terrain in Western Australia. International Journal of Remote Sensing, 10(3), 475-497.
  • Çağlayan, M. A., & Şengün, M. (2002). 1/100.000 Ölçekli, Açınsama Nitelikli Türkiye Jeoloji Haritaları, No: 66. Van-L48 Paftası, Jeoloji Etütleri Dairesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Çubukçu, H. E., Ulusoy, İ., Aydar, E., Ersoy, O., Şen, E., Gourgaud, A., & Guillou, H. (2012). Mt. Nemrut Volcano (Eastern Turkey): Temporal Petrological Evolution. Journal of Volcanology and Geothermal Research, 209, 33-60.
  • Deer, W.A., R.A. Howie, & J. Zussman (1978). Rock-Forming Minerals, (2nd edition), v. 2A, single-chain silicates, 20{161.
  • Frutuoso, R., Lima, A., & Teodoro, A. C. (2021). Application of Remote Sensing Data in Gold Exploration: Targeting Hydrothermal Alteration Using Landsat 8 İmagery İn Northern Portugal. Arabian Journal of Geosciences, 14(6), 1-18.
  • Gong, P., Niu, Z., Cheng, X., Zhao, K., Zhou, D., Guo, J., ... & Yan, J. (2010). China’s Wetland Change (1990–2000) Determined By Remote Sensing. Science China Earth Sciences, 53(7), 1036-1042.
  • Imanian, A., Tangestani, M. H., & Asadi, A. (2019). Investigation of Spectral Characteristics of Carbonate Rocks–A Case Study on Posht Moleh Mount in Iran.
  • Han, T., & Nelson, J. (2014). Mapping Hydrothermally Altered Rocks With Landsat 8 imagery: A Case Study in The KSM And Snowfield Zones, Northwestern British Columbia. Geological Fieldwork, 103-112.
  • Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristóbal, J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843.
  • Niu, X., & Li, Y. (2020). Remote Sensing Evaluation of Ecological Environment of Anqing City Based on Remote Sensing Ecological Index. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 733-737.
  • Pour, A. B., & Hashim, M. (2015). Hydrothermal Alteration Mapping From Landsat-8 Data, Sar Cheshmeh Copper Mining District, South-Eastern Islamic Republic Of Iran. Journal of Taibah University for Science, 9(2), 155-166.
  • Pour, A. B., Hashim, M., Park, Y., & Hong, J. K. (2018). Mapping Alteration Mineral Zones And Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International, 33(12), 1281-1306.
  • Wu, W. T., Zhou, Y. X., & Tian, B. (2017). Coastal Wetlands Facing Climate Change and Anthropogenic Activities: A Remote Sensing Analysis And Modelling Application. Ocean & Coastal Management, 138, 1-10.
  • van der Meer, F. D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C. A., Bakker, W. H., Noomen, M. F., ... & Woldai, T. (2012). Multi-and Hyperspectral Geologic Remote Sensing: A Review. International journal of applied Earth observation and geoinformation, 14(1), 112-128.
  • van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., & Wechsler, C. (2014). Geologic Remote Sensing For Geothermal Exploration: A Review. International journal of applied earth observation and geoinformation, 33, 255-269.
  • Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., ... & Dickinson, R. (2013). The Role of Satellite Remote Sensing in Climate Change Studies. Nature climate change, 3(10), 875-883.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Software Engineering (Other)
Journal Section Research Article
Authors

Coşkun Güneş 0000-0001-7138-3908

Submission Date December 14, 2025
Acceptance Date December 28, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Güneş, C. (2025). Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları. GSI Journals Serie C: Advancements in Information Sciences and Technologies, 8(1), 157-165.
AMA Güneş C. Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları. AIST. December 2025;8(1):157-165.
Chicago Güneş, Coşkun. “Nemrut Kalderası’ Nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil Ve Demirli Mineral Anomalilerinin Saha Araştırmaları”. GSI Journals Serie C: Advancements in Information Sciences and Technologies 8, no. 1 (December 2025): 157-65.
EndNote Güneş C (December 1, 2025) Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları. GSI Journals Serie C: Advancements in Information Sciences and Technologies 8 1 157–165.
IEEE C. Güneş, “Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları”, AIST, vol. 8, no. 1, pp. 157–165, 2025.
ISNAD Güneş, Coşkun. “Nemrut Kalderası’ Nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil Ve Demirli Mineral Anomalilerinin Saha Araştırmaları”. GSI Journals Serie C: Advancements in Information Sciences and Technologies 8/1 (December2025), 157-165.
JAMA Güneş C. Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları. AIST. 2025;8:157–165.
MLA Güneş, Coşkun. “Nemrut Kalderası’ Nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil Ve Demirli Mineral Anomalilerinin Saha Araştırmaları”. GSI Journals Serie C: Advancements in Information Sciences and Technologies, vol. 8, no. 1, 2025, pp. 157-65.
Vancouver Güneş C. Nemrut Kalderası’ nın Kuzey Krater Çeperinde (Tatvan, Bitlis) Landsat-8 Görüntüleri Üzerinden Tespit Edilen Kil ve Demirli Mineral Anomalilerinin Saha Araştırmaları. AIST. 2025;8(1):157-65.