Review
BibTex RIS Cite

Analysis of the Dam Monitoring Studies Conducted with Geodetic Methods

Year 2020, Volume: 3 Issue: 1, 32 - 46, 25.02.2020

Abstract

Dams with high construction costs are subject to deformation due to internal and external factors, such as self-weight, temperature changes, the force of the reservoir water. The effects of these factors on structural behavior should be monitored and, if necessary, precautions must be taken. To serve the purpose of their establishment in a beneficial way, dams should be monitored periodically by geodetic or geotechnical methods. In this study, the studies on dam deformation monitoring with geodetic methods in the world and in Turkey were evaluated. Within the scope of the study, robotic total station and GNSS, terrestrial laser scanner samples were given. The aim of this study is to provide a summary of the current solutions and future tendencies to the people working on the investigation of the deformations in the dams by geodetic methods.

References

  • Acosta, L., de Lacy, M., Ramos, M., Cano, J., Herrera, A., Avilés, M., & Gil, A. (2018). Displacements study of an earth fill dam based on high precision geodetic monitoring and numerical modeling. Sensors, 18(5), 1369. https://doi.org/10.3390/s18051369
  • Alba, M., Fregonese, L., Prandi, F., Scaioni, M., & Valgoi, P. (2006). Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 6.
  • Alcay, S., Yigit, C. O., Inal, C., & Ceylan, A. (2018). Analysis of displacement response of the Ermenek dam monitored by an integrated geodetic and pendulum system. International Journal of Civil Engineering, 16(10), 1279-1291. https://doi.org/10.1007/s40999-017-0211-x
  • Alkan, R. M., Gülal, V. E., İlçi, V., Ozulu, İ. M., Alkan, M. N., Köse, Z.,Aladoğan K., Tombuş, F. E., Şahin M., Yavaşoglu, H., & Oku, G. (Ekim, 2016). Obruk Barajı Deformasyon Ölçüleri, 8. Ulusal Mühendislik Ölçmeleri Sempozyumu, İstanbul.
  • Barzaghi, R., Cazzaniga, N., De Gaetani, C., Pinto, L., & Tornatore, V. (2018). Estimating and comparing dam deformation using classical and GNSS techniques. Sensors, 18(3), 756. https://doi.org/10.3390/s18030756
  • Bayrak, T. (2007). Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey. Natural Hazards and Earth System Science, 7(2), 289-297.
  • Bayrak, T. (2008). Verifying pressure of water on dams, a case study. Sensors, 8(9), 5376-5385. https://doi.org/10.3390/s8095376
  • Begnudelli, L., & Sanders, B. F. (2007). Simulation of the St. Francis dam-break flood. Journal of Engineering Mechanics, 133(11), 1200-1212. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:11(1200)
  • Ehiorobo, J. O., & Irughe-Ehigiator, R. (2011). Monitoring for horizontal movement in an earth dam using differential GPS. Journal of Emerging Trends in Engineering and Applied Sciences, 2(6), 908-913.
  • Erkaya, H., Hoşbaş R. G., Gülal, V. E., ersoy, N., Doğan, U., Pırtı, A., Soycan, M., Gümüş, K., Öcalan T., Aykut, N. O., Akpınar, B., & Poyraz F (Mayıs, 2009). Beton Kemer Barajlarda Deformasyonlarin Modern Ölçme Teknikleri ile Belirlenmesi. TMMOB Harita ve Kadastro Mühendisleri Odasi, 12. Türkiye Harita Bilimsel ve Teknik Kurultayi, Ankara, Türkiye.
  • Feng, L. M., Pekau, O. A., & Zhang, C. H. (1996). Cracking analysis of arch dams by 3D boundary element method. Journal of Structural Engineering, 122(6), 691-699. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(691)
  • Gikas, V., & Sakellariou, M. (2008). Settlement analysis of the Mornos earth dam (Greece): Evidence from numerical modeling and geodetic monitoring. Engineering Structures, 30(11), 3074-3081. https://doi.org/10.1016/j.engstruct.2008.03.019
  • Gökalp, E., & Taşçı, L. (2009). Deformation monitoring by GPS at embankment dams and deformation analysis. Survey Review, 41(311), 86-102. https://doi.org/10.1179/003962608X390021
  • Gong, G. C., Chang, J., Chiang, K. P., Hsiung, T. M., Hung, C. C., Duan, S. W., & Codispoti, L. A. (2006). Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam?. Geophysical Research Letters, 33(7). https://doi.org/10.1029/2006GL025800
  • González-Aguilera, D., Gómez-Lahoz, J., & Sánchez, J. (2008). A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors, 8(9), 5866-5883. https://doi.org/10.3390/s8095866
  • Gumus, K., Erkaya, H., & Soycan, M. (2013). Investigation of repeatability of digital surface model obtained from point clouds in a concrete arch dam for monitoring of deformations. Boletim de Ciências Geodésicas, 19(2), 268-286. http://dx.doi.org/10.1590/S1982-21702013000200007
  • Hudnut, K. W., & Behr, J. A. (1998). Continuous GPS monitoring of structural deformation at Pacoima Dam, California. Seismological Research Letters, 69(4), 299-308. https://doi.org/10.1785/gssrl.69.4.299
  • Kalkan, Y. (2014). Geodetic deformation monitoring of Ataturk Dam in Turkey. Arabian Journal of Geosciences, 7(1), 397-405. https://doi.org/10.1007/s12517-012-0765-5
  • Konakoğlu, B. (2019). Beton barajlarda deformasyonların statik, kinematik ve dinamik modeller ile belirlenmesi: Artvin Deriner Barajı Örneği. Doktora Tezi. Trabzon: Karadeniz Teknik Üniversitesi.
  • Koskinas, A., Tegos, A., Tsira, P., Dimitriadis, P., Iliopoulou, T., Papanicolaou, P., Koutsoyiannis, D., & Williamson, T. (2019). Insights into the oroville dam 2017 spillway incident. Geosciences, 9(1), 37. https://doi.org/10.3390/geosciences9010037
  • Kulkarni, M. N., Radhakrishnan, N., & Rai, D. (2006). Global positioning system in disaster monitoring of Koyna dam, Western Maharashtra. Survey Review, 38(301), 629-636. https://doi.org/10.1179/sre.2006.38.301.629
  • Le Page, M. (2019). The trouble with dams. NewScientist, 243(3242), 5. https://doi.org/10.1016/S0262-4079(19)31448-4
  • Li, Q., Zuo, Z., Hu, Y., & Liang, G. (2016). Smart monitoring of a super high arch dam during the first reservoir-filling phase. Journal of Aerospace Engineering, 30(2), B4016001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000573
  • Londe, P., 1987. The Malpasset dam failure. Engineering Geology, 24(1-4), 331-338. https://doi.org/10.1016/0013-7952(87)90069-X
  • Manake, A., & Kulkarni, M. N. (2002). Study of the deformation of Koyna dam using the Global Positioning System. Survey Review, 36(285), 497-507. https://doi.org/10.1179/sre.2002.36.285.497
  • Pipitone, C., Maltese, A., Dardanelli, G., Lo Brutto, M., & La Loggia, G. (2018). Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS. Remote Sensing, 10(1), 71. https://doi.org/10.3390/rs10010071
  • Pytharouli, S., Michalis, P., & Raftopoulos, S. (2019). From theory to field evidence: observations on the evolution of the settlements of an earthfill dam, over long time scale. Infrastructures, 4(4). https://doi.org/10.3390/infrastructures4040065
  • Saidi, S., Houimli, H., & Zid, J. (2017). Geodetic and GIS tools for dam safety: case of Sidi Salem dam (northern Tunisia). Arabian Journal of Geosciences, 10(22), 505. https://doi.org/10.1007/s12517-017-3259-7
  • Sultanbekov, R. R. (2005). Substantiation of the strength and stability of concrete dams based on the solution of a nonlinear three-dimensional problem. Power Technology and Engineering (formerly Hydrotechnical Construction), 39(4), 211-214. https://doi.org/10.1007/s10749-005-0309-1
  • Taşçi, L. (2008). Dam deformation measurements with GPS. Geodezija ir kartografija, 34(4), 116-121. https://doi.org/10.3846/1392-1541.2008.34.116-121
  • Widmann, R. (1990). Fracture mechanics and its limits of application in the field of dam construction. Engineering Fracture Mechanics, 35(1-3), 531-539. https://doi.org/10.1016/0013-7944(90)90228-9
  • Xiao, R., Shi, H., He, X., Li, Z., Jia, D., & Yang, Z. (2019). Deformation Monitoring of Reservoir Dams Using GNSS: An Application to South-to-North Water Diversion Project, China. IEEE Access, 7, 54981-54992. https://doi.org/10.1109/ACCESS.2019.2912143
  • Yang, Z., Liu, D., Ji, D., & Xiao, S. (2010). Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Science China Technological Sciences, 53(4), 1114-1125. https://doi.org/10.1007/s11431-009-0387-7
  • Yavaşoğlu, H. H., Kalkan Y., Tiryakioğlu, İ., Yigit, C. O., Özbey, V., Alkan, M. N., Bilgi, S., & Alkan, R. M. (2018). Monitoring the deformation and strain analysis on the Ataturk Dam, Turkey. Geomatics, Natural Hazards and Risk, 9(1), 94-107. https://doi.org/10.1080/19475705.2017.1411400
  • Yigit, C. O., Alcay, S., & Ceylan, A. (2016). Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data. Geomatics, Natural Hazards and Risk, 7(4), 1489-1505. https://doi.org/10.1080/19475705.2015.1047902

BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ

Year 2020, Volume: 3 Issue: 1, 32 - 46, 25.02.2020

Abstract

Yapım maliyeti oldukça yüksek olan barajlar, barajın kendi ağırlığı, sıcaklık değişimi ve su yükü gibi iç ve dış faktörlerden dolayı deformasyona maruz kalırlar. Bahsi geçen faktörler karşısında yapısal davranışın ne kadar etkilendiği izlenmeli, varsa hareketlerin belirlenmesi ve barajların güvenlikleri sağlanmalıdır. Barajlar kurulum amaçlarına sağlıklı bir şekilde hizmet etmeleri barajlar jeodezik ve geoteknik yöntemler ile izlenmelidir. Bu çalışmada, baraj deformasyonlarının jeodezik yöntemlerle izlenmesi konusunda Dünyada ve Türkiye’de yapılan çalışmalar değerlendirilmiştir. Çalışma kapsamında, jeodezik ölçüm tekniklerden robotik total station ve GNSS, yersel lazer tarayıcı örnekleri verilmiştir. Bu çalışmanın amacı barajlarda deformasyonların jeodezik yöntemler ile incelenmesi üzerine çalışan kişilere mevcut çözümleri ve gelecekteki yönelimleri anlamalarını özetleyerek sağlamaktır.

References

  • Acosta, L., de Lacy, M., Ramos, M., Cano, J., Herrera, A., Avilés, M., & Gil, A. (2018). Displacements study of an earth fill dam based on high precision geodetic monitoring and numerical modeling. Sensors, 18(5), 1369. https://doi.org/10.3390/s18051369
  • Alba, M., Fregonese, L., Prandi, F., Scaioni, M., & Valgoi, P. (2006). Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 6.
  • Alcay, S., Yigit, C. O., Inal, C., & Ceylan, A. (2018). Analysis of displacement response of the Ermenek dam monitored by an integrated geodetic and pendulum system. International Journal of Civil Engineering, 16(10), 1279-1291. https://doi.org/10.1007/s40999-017-0211-x
  • Alkan, R. M., Gülal, V. E., İlçi, V., Ozulu, İ. M., Alkan, M. N., Köse, Z.,Aladoğan K., Tombuş, F. E., Şahin M., Yavaşoglu, H., & Oku, G. (Ekim, 2016). Obruk Barajı Deformasyon Ölçüleri, 8. Ulusal Mühendislik Ölçmeleri Sempozyumu, İstanbul.
  • Barzaghi, R., Cazzaniga, N., De Gaetani, C., Pinto, L., & Tornatore, V. (2018). Estimating and comparing dam deformation using classical and GNSS techniques. Sensors, 18(3), 756. https://doi.org/10.3390/s18030756
  • Bayrak, T. (2007). Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey. Natural Hazards and Earth System Science, 7(2), 289-297.
  • Bayrak, T. (2008). Verifying pressure of water on dams, a case study. Sensors, 8(9), 5376-5385. https://doi.org/10.3390/s8095376
  • Begnudelli, L., & Sanders, B. F. (2007). Simulation of the St. Francis dam-break flood. Journal of Engineering Mechanics, 133(11), 1200-1212. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:11(1200)
  • Ehiorobo, J. O., & Irughe-Ehigiator, R. (2011). Monitoring for horizontal movement in an earth dam using differential GPS. Journal of Emerging Trends in Engineering and Applied Sciences, 2(6), 908-913.
  • Erkaya, H., Hoşbaş R. G., Gülal, V. E., ersoy, N., Doğan, U., Pırtı, A., Soycan, M., Gümüş, K., Öcalan T., Aykut, N. O., Akpınar, B., & Poyraz F (Mayıs, 2009). Beton Kemer Barajlarda Deformasyonlarin Modern Ölçme Teknikleri ile Belirlenmesi. TMMOB Harita ve Kadastro Mühendisleri Odasi, 12. Türkiye Harita Bilimsel ve Teknik Kurultayi, Ankara, Türkiye.
  • Feng, L. M., Pekau, O. A., & Zhang, C. H. (1996). Cracking analysis of arch dams by 3D boundary element method. Journal of Structural Engineering, 122(6), 691-699. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(691)
  • Gikas, V., & Sakellariou, M. (2008). Settlement analysis of the Mornos earth dam (Greece): Evidence from numerical modeling and geodetic monitoring. Engineering Structures, 30(11), 3074-3081. https://doi.org/10.1016/j.engstruct.2008.03.019
  • Gökalp, E., & Taşçı, L. (2009). Deformation monitoring by GPS at embankment dams and deformation analysis. Survey Review, 41(311), 86-102. https://doi.org/10.1179/003962608X390021
  • Gong, G. C., Chang, J., Chiang, K. P., Hsiung, T. M., Hung, C. C., Duan, S. W., & Codispoti, L. A. (2006). Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam?. Geophysical Research Letters, 33(7). https://doi.org/10.1029/2006GL025800
  • González-Aguilera, D., Gómez-Lahoz, J., & Sánchez, J. (2008). A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors, 8(9), 5866-5883. https://doi.org/10.3390/s8095866
  • Gumus, K., Erkaya, H., & Soycan, M. (2013). Investigation of repeatability of digital surface model obtained from point clouds in a concrete arch dam for monitoring of deformations. Boletim de Ciências Geodésicas, 19(2), 268-286. http://dx.doi.org/10.1590/S1982-21702013000200007
  • Hudnut, K. W., & Behr, J. A. (1998). Continuous GPS monitoring of structural deformation at Pacoima Dam, California. Seismological Research Letters, 69(4), 299-308. https://doi.org/10.1785/gssrl.69.4.299
  • Kalkan, Y. (2014). Geodetic deformation monitoring of Ataturk Dam in Turkey. Arabian Journal of Geosciences, 7(1), 397-405. https://doi.org/10.1007/s12517-012-0765-5
  • Konakoğlu, B. (2019). Beton barajlarda deformasyonların statik, kinematik ve dinamik modeller ile belirlenmesi: Artvin Deriner Barajı Örneği. Doktora Tezi. Trabzon: Karadeniz Teknik Üniversitesi.
  • Koskinas, A., Tegos, A., Tsira, P., Dimitriadis, P., Iliopoulou, T., Papanicolaou, P., Koutsoyiannis, D., & Williamson, T. (2019). Insights into the oroville dam 2017 spillway incident. Geosciences, 9(1), 37. https://doi.org/10.3390/geosciences9010037
  • Kulkarni, M. N., Radhakrishnan, N., & Rai, D. (2006). Global positioning system in disaster monitoring of Koyna dam, Western Maharashtra. Survey Review, 38(301), 629-636. https://doi.org/10.1179/sre.2006.38.301.629
  • Le Page, M. (2019). The trouble with dams. NewScientist, 243(3242), 5. https://doi.org/10.1016/S0262-4079(19)31448-4
  • Li, Q., Zuo, Z., Hu, Y., & Liang, G. (2016). Smart monitoring of a super high arch dam during the first reservoir-filling phase. Journal of Aerospace Engineering, 30(2), B4016001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000573
  • Londe, P., 1987. The Malpasset dam failure. Engineering Geology, 24(1-4), 331-338. https://doi.org/10.1016/0013-7952(87)90069-X
  • Manake, A., & Kulkarni, M. N. (2002). Study of the deformation of Koyna dam using the Global Positioning System. Survey Review, 36(285), 497-507. https://doi.org/10.1179/sre.2002.36.285.497
  • Pipitone, C., Maltese, A., Dardanelli, G., Lo Brutto, M., & La Loggia, G. (2018). Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS. Remote Sensing, 10(1), 71. https://doi.org/10.3390/rs10010071
  • Pytharouli, S., Michalis, P., & Raftopoulos, S. (2019). From theory to field evidence: observations on the evolution of the settlements of an earthfill dam, over long time scale. Infrastructures, 4(4). https://doi.org/10.3390/infrastructures4040065
  • Saidi, S., Houimli, H., & Zid, J. (2017). Geodetic and GIS tools for dam safety: case of Sidi Salem dam (northern Tunisia). Arabian Journal of Geosciences, 10(22), 505. https://doi.org/10.1007/s12517-017-3259-7
  • Sultanbekov, R. R. (2005). Substantiation of the strength and stability of concrete dams based on the solution of a nonlinear three-dimensional problem. Power Technology and Engineering (formerly Hydrotechnical Construction), 39(4), 211-214. https://doi.org/10.1007/s10749-005-0309-1
  • Taşçi, L. (2008). Dam deformation measurements with GPS. Geodezija ir kartografija, 34(4), 116-121. https://doi.org/10.3846/1392-1541.2008.34.116-121
  • Widmann, R. (1990). Fracture mechanics and its limits of application in the field of dam construction. Engineering Fracture Mechanics, 35(1-3), 531-539. https://doi.org/10.1016/0013-7944(90)90228-9
  • Xiao, R., Shi, H., He, X., Li, Z., Jia, D., & Yang, Z. (2019). Deformation Monitoring of Reservoir Dams Using GNSS: An Application to South-to-North Water Diversion Project, China. IEEE Access, 7, 54981-54992. https://doi.org/10.1109/ACCESS.2019.2912143
  • Yang, Z., Liu, D., Ji, D., & Xiao, S. (2010). Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Science China Technological Sciences, 53(4), 1114-1125. https://doi.org/10.1007/s11431-009-0387-7
  • Yavaşoğlu, H. H., Kalkan Y., Tiryakioğlu, İ., Yigit, C. O., Özbey, V., Alkan, M. N., Bilgi, S., & Alkan, R. M. (2018). Monitoring the deformation and strain analysis on the Ataturk Dam, Turkey. Geomatics, Natural Hazards and Risk, 9(1), 94-107. https://doi.org/10.1080/19475705.2017.1411400
  • Yigit, C. O., Alcay, S., & Ceylan, A. (2016). Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data. Geomatics, Natural Hazards and Risk, 7(4), 1489-1505. https://doi.org/10.1080/19475705.2015.1047902
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Berkant Konakoglu 0000-0002-8276-587X

Publication Date February 25, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Konakoglu, B. (2020). BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ. GSI Journals Serie C: Advancements in Information Sciences and Technologies, 3(1), 32-46.
AMA Konakoglu B. BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ. AIST. February 2020;3(1):32-46.
Chicago Konakoglu, Berkant. “BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ”. GSI Journals Serie C: Advancements in Information Sciences and Technologies 3, no. 1 (February 2020): 32-46.
EndNote Konakoglu B (February 1, 2020) BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ. GSI Journals Serie C: Advancements in Information Sciences and Technologies 3 1 32–46.
IEEE B. Konakoglu, “BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ”, AIST, vol. 3, no. 1, pp. 32–46, 2020.
ISNAD Konakoglu, Berkant. “BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ”. GSI Journals Serie C: Advancements in Information Sciences and Technologies 3/1 (February 2020), 32-46.
JAMA Konakoglu B. BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ. AIST. 2020;3:32–46.
MLA Konakoglu, Berkant. “BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ”. GSI Journals Serie C: Advancements in Information Sciences and Technologies, vol. 3, no. 1, 2020, pp. 32-46.
Vancouver Konakoglu B. BARAJLARIN JEODEZİK YÖNTEMLER İLE İZLENMESİ ÜZERİNE YAPILAN ÇALIŞMALARIN İRDELENMESİ. AIST. 2020;3(1):32-46.