Research Article
BibTex RIS Cite

Şelatör kompleksleri kullanılarak Pb ile kirlenmiş topraklarda Brassica napus ve Chenopodium quinoa'nın fitoremediasyon etkinlikleri

Year 2022, , 13 - 17, 15.05.2022
https://doi.org/10.30616/ajb.1030084

Abstract

Ağır metal kirliliği önemli kirliliklerden olup, fitoremediasyon bu kirliliği ortadan kaldırmak için tercih edilen yöntemlerdendir. Fitoremediasyon verimliliği için bozunabilir şelatlama maddesinin kullanımı, ağır metallerin topraktan uzaklaştırılması için için umut verici ve düşük maliyetli bir yöntemdir. Bu çalışmada, EDTA (etilendiamintetraasetik asit), nitro (4-nitrobenzaldehit), piridin, 1-10 fenantrolin ve hümik asidin Brassica napus L. ve Chenopodium quinoa Willd. türleri için fitoremediasyon etkinliklerini arttırıp arttırmadığı ve uygulanabilirliği araştırılmıştır. Çalışma (i) kontrol (şelat ilavesiz), (ii) EDTA, (iii) nitro, (iv) piridine, (v) 1-10 fenantrolin ve (vi) hümik asit uygulamalarının her birinden 4 doz (0, 2.5, 5 ve 10 mmol kg-1) uygulayarak tam şansa bağlı blok deneme desenine göre 3 tekerrürlü olarak sera şartlarında yürütülmüştür. Elde edilen sonuçlara göre, B. napus için en yüksek tolerans indeksinin (TI) 2.5 mmol kg-1 nitro şelatta bulunmuştur. C. quinoa'nın TI değeri 5 mmol kg-1 piridin şelatta en yüksek bulunmuştur. Maksimum Pb birikimleri sırasıyla B. napus ve C. quinoa'da 5 mmol kg-1 1-10 fenantrolin ve 5 mmol kg-1 piridin şelatlarında bulunmuştur. Her iki türde de köklerde Pb birikimleri yüksek iken, gövde ve yapraklarda düşük düzeydeydir. Biyokonsantrasyon faktörleri (BCF) en yüksek sırasıyla B. napus ve C. quinoa için 2.5 mmol kg-1 nitro ve 1-10 fenantrolinde hesaplanmıştır. Bu türler birçok çalışmada hiperakümülatör bitkiler olarak kullanılmıştır. Çalışma sonunda, türlerin en yüksek hiperakümülatör kapasiteleri 2.5 mmol kg-1 nitro ve 1-10 fenantrolin uygulamasından elde edildiği bulunmuştur. Ağır metal kirliliğine maruz habitatların temizlenmesinde kullanılacak hiperakümülatör bitkiler kadar onların performansının artırılması da fitoremediasyonun etkinliğini artıracaktır.

Supporting Institution

Amasya Üniversitesi

Project Number

FMB-BAP 17-0246

References

  • Adiloğlu S, Adiloğlu A, Eryılmaz-Açıkgöz F, Yeniaras T, Solmaz Y (2015). Labada (Rumex patientia L.) bitkisinin kurşun kirliliğinin gideriminde kullanim kapasitesinin araştirilmasi. International Anatolia Academic Online Journal Sciences Journal 3(2): 1-7.
  • Alaribe FO, Agamuthu P, (2015). Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecological Engineering 83: 513-520.
  • Ali SY, Chaudhury S (2016). EDTA-enhanced phytoextraction by Tagetes sp. and effect on bioconcentration and translocation of heavy metals. Environmental Processes 3(4): 735-746.
  • Badr N, Fawazy M, Al-Qahtani KM (2012). Phytoremediation: an ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal 16: 1292-1301.
  • Ben Rejeb K, Ghnaya T, Zaier H, Benzarti M, Baioui R, Ghabriche R, Meriem W, Stanley L, Chedly A (2013). Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecological Engineering 60: 309-315.
  • Bhattacharya T, Chakraborty S, Banerjee DK (2010). Heavy metal uptake and its effect on macronutrients, chlorophyll, protein, and peroxidase activity of Paspalum distichum grown on sludge-dosed soils. Environmental Monitoring and Assessment 169(1-4): 15-26.
  • Chen Y, Lin Q, Luo Y, He Y, Zhen S, Yu YL, Tian GM, Wong MH (2003). The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6): 807-811.
  • Clemens S (2006). Toxic metal accumulation. responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11): 1707-1719.
  • Dürüst N, Dürüst Y, Tuǧrul D, Zengin M (2004). Heavy metal contents of Pinus radiata trees of İzmit (Turkey). Asian Journal of Chemistry 16(2): 1129-1134.
  • Elliott HA, Liberati MR, Huang CP (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality 15(3): 214-219.
  • Evangelou MWH, Daghan H, Schaeffer A (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57(3): 207-213.
  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018). Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology 253: 64-71.
  • Halim M, Conte P, Piccolo A (2003). Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52(1): 265-275.
  • Idris M, Abdullah SRS, Titah HS, Latif MT, Abasa AR, Husin AK, Hanima RF, Ayub R (2016). Screening and identification of plants at a petroleum contaminated site in Malaysia for phytoremediation. Journal of Environmental Science and Management 19(1): 27-36.
  • Kabata-Pendias A (2004). Soil-plant transfer of trace elements-an environmental issue. Geoderma 122(2-4): 143-149. Kanwal U, Ali S, Shakoor MB, Farid M, Hussain S, Yasmeen T, Adrees M, Bharwana SA, Abbas F (2014). EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research 21(16): 9899-9910.
  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution 152(3): 686-692.
  • Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, & Soil Pollution 223(2): 877-888.
  • Lai HY, Chen ZS (2005). The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere 60(8): 1062-1071.
  • Mertens J, Luyssaert S, Verheyen K (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution 138(1): 1-4.
  • Nascimento CM, Alencar MARC, Chávez-Cerda S, da Silva MGA, Meneghetti MR, Hickmann JM (2006). Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium. Journal of Optics A: Pure and Applied Optics 8(11): 947-951.
  • Özay C, Mammadov R (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanilabilirliği. Balıkesir Üniversitesi Fen Bilim Enstitüsü Dergisi 15(1): 68-77.
  • Padmavathiamma PK, Li LY (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, & Soil Pollution 184(1-4): 105-126.
  • Patra GK, Goldberg I (2003). Syntheses and crystal structures of copper and silver complexes with new imine ligands - air-stable. photoluminescent cuin4 chromophores. European Journal of Inorganic Chemistry 2003(5): 969-977.
  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63(6): 918-925.
  • Raskin I, Smith RD, Salt DE (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8(2): 221-226.
  • Reeves RD (2006). Hyperaccumulation of trace elements by plants. In: Morel, J.L., Echevarria, G. ve Goncharova, N. (Eds.). Phytoremediation of metal-contaminated soils, NATO Science Series: IV: Earth and Environmental Sciences. NY: Springer, pp. 1-25.
  • Safari Sinegani AA, Khalilikhah F (2010). The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environmental Chemistry Letters 9(2): 259-265.
  • Salas-Moreno M, Marrugo-Negrete J (2020). Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. ex Flüggé. International Journal of Phytoremediation 22(1): 87-97.
  • Tai Y, Yang Y, Li Z, Yang Y, Wang J, Zhuang P, Zou B (2018). Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. Environmental Technology 39(16): 2138-2150.
  • Turan M, Angin I (2004). Organic chelate assisted phytoextraction of B. Cd. Mo and Pb from contaminated soils using two agricultural crop species. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 54(4): 221-231.
  • Turan M, Esringü A (2008). Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant, Soil and Environment 53(1): 7-15.
  • Turgut C, Katie Pepe M, Cutright TJ (2004). The effect of EDTA and citric acid on phytoremediation of Cd. Cr. and Ni from soil using Helianthus annuus. Environmental Pollution 131(1): 147-154.
  • Vargas C, Pérez-Esteban J, Escolástico C, Masaguer A, Moliner A, (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research 23(13): 13521–13530.
  • Wilkings DA (1978). The Measurement of tolerance to edaphic factors by means of root growth. New Phytologist 80(3), 623-633.
  • Zaier H, Ghnaya T, Ghabriche R, Chmingui W, Lakhdar A, Lutts S, Adbelly C (2014). EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Environmental Science and Pollution Research 21(12): 7607-7615.
  • Zayed A, Lytle CM, Terry N (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta 206(2): 284-292.
  • Zhang H, Guo Q, Yang J, Ma J, Chen G, Chen T, Zhu G, Wang J, Zhang G, Wang X, Shao C (2016). Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicology and Environmental Safety 133: 57-62.

Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes

Year 2022, , 13 - 17, 15.05.2022
https://doi.org/10.30616/ajb.1030084

Abstract

Heavy metal pollution is one of the essential pollutions, and phytoremediation is one of the preferred methods to eliminate this pollution. The use of the degradable chelating agent for phytoremediation efficiency is a promising and low-cost method for removing soil contaminated with heavy metals. In this study, it was investigated whether phenanthroline and humic acid increase phytoremediation activities for Brassica napus L. and Chenopodium quinoa Wild. species and their applicability. The study was carried out under greenhouse conditions with 3 replications according to a complete random block trial design by applying 4 doses of each of the (i) control (without chelate), (ii) EDTA, (iii) nitro, (iv) pyridine, (v) 1-10 phenanthroline and (vi) humic acid treatments (0, 2.5, 5 and 10 mmol kg-1 The obtained results showed that the highest tolerance indices (TI) for B. napus was found at 2.5 mmol kg-1 nitro chelate. TI of C. quinoa was highest at 5 mmol kg-1 pyridine chelate. Maximum Pb accumulations were found at 5 mmol kg-1 1-10 phenanthroline and 5 mmol kg-1 pyridine chelates in B. napus and C. quinoa, respectively. In both species, while Pb accumulations were high in roots, they were low in stems and leaves. Bioconcentration factors (BCF) were calculated highest at 2.5 mmol kg-1 nitro and 1-10 phenanthroline for B. napus and C. quinoa, respectively. These species were used as hyperaccumulator plants in many studies. Increasing the performance of hyperaccumulator plants to be used in cleaning the habitats exposed to heavy metal pollution will increase the efficiency of phytoremediation.

Project Number

FMB-BAP 17-0246

References

  • Adiloğlu S, Adiloğlu A, Eryılmaz-Açıkgöz F, Yeniaras T, Solmaz Y (2015). Labada (Rumex patientia L.) bitkisinin kurşun kirliliğinin gideriminde kullanim kapasitesinin araştirilmasi. International Anatolia Academic Online Journal Sciences Journal 3(2): 1-7.
  • Alaribe FO, Agamuthu P, (2015). Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecological Engineering 83: 513-520.
  • Ali SY, Chaudhury S (2016). EDTA-enhanced phytoextraction by Tagetes sp. and effect on bioconcentration and translocation of heavy metals. Environmental Processes 3(4): 735-746.
  • Badr N, Fawazy M, Al-Qahtani KM (2012). Phytoremediation: an ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal 16: 1292-1301.
  • Ben Rejeb K, Ghnaya T, Zaier H, Benzarti M, Baioui R, Ghabriche R, Meriem W, Stanley L, Chedly A (2013). Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecological Engineering 60: 309-315.
  • Bhattacharya T, Chakraborty S, Banerjee DK (2010). Heavy metal uptake and its effect on macronutrients, chlorophyll, protein, and peroxidase activity of Paspalum distichum grown on sludge-dosed soils. Environmental Monitoring and Assessment 169(1-4): 15-26.
  • Chen Y, Lin Q, Luo Y, He Y, Zhen S, Yu YL, Tian GM, Wong MH (2003). The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6): 807-811.
  • Clemens S (2006). Toxic metal accumulation. responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11): 1707-1719.
  • Dürüst N, Dürüst Y, Tuǧrul D, Zengin M (2004). Heavy metal contents of Pinus radiata trees of İzmit (Turkey). Asian Journal of Chemistry 16(2): 1129-1134.
  • Elliott HA, Liberati MR, Huang CP (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality 15(3): 214-219.
  • Evangelou MWH, Daghan H, Schaeffer A (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57(3): 207-213.
  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018). Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology 253: 64-71.
  • Halim M, Conte P, Piccolo A (2003). Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52(1): 265-275.
  • Idris M, Abdullah SRS, Titah HS, Latif MT, Abasa AR, Husin AK, Hanima RF, Ayub R (2016). Screening and identification of plants at a petroleum contaminated site in Malaysia for phytoremediation. Journal of Environmental Science and Management 19(1): 27-36.
  • Kabata-Pendias A (2004). Soil-plant transfer of trace elements-an environmental issue. Geoderma 122(2-4): 143-149. Kanwal U, Ali S, Shakoor MB, Farid M, Hussain S, Yasmeen T, Adrees M, Bharwana SA, Abbas F (2014). EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research 21(16): 9899-9910.
  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution 152(3): 686-692.
  • Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, & Soil Pollution 223(2): 877-888.
  • Lai HY, Chen ZS (2005). The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere 60(8): 1062-1071.
  • Mertens J, Luyssaert S, Verheyen K (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution 138(1): 1-4.
  • Nascimento CM, Alencar MARC, Chávez-Cerda S, da Silva MGA, Meneghetti MR, Hickmann JM (2006). Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium. Journal of Optics A: Pure and Applied Optics 8(11): 947-951.
  • Özay C, Mammadov R (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanilabilirliği. Balıkesir Üniversitesi Fen Bilim Enstitüsü Dergisi 15(1): 68-77.
  • Padmavathiamma PK, Li LY (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, & Soil Pollution 184(1-4): 105-126.
  • Patra GK, Goldberg I (2003). Syntheses and crystal structures of copper and silver complexes with new imine ligands - air-stable. photoluminescent cuin4 chromophores. European Journal of Inorganic Chemistry 2003(5): 969-977.
  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63(6): 918-925.
  • Raskin I, Smith RD, Salt DE (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8(2): 221-226.
  • Reeves RD (2006). Hyperaccumulation of trace elements by plants. In: Morel, J.L., Echevarria, G. ve Goncharova, N. (Eds.). Phytoremediation of metal-contaminated soils, NATO Science Series: IV: Earth and Environmental Sciences. NY: Springer, pp. 1-25.
  • Safari Sinegani AA, Khalilikhah F (2010). The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environmental Chemistry Letters 9(2): 259-265.
  • Salas-Moreno M, Marrugo-Negrete J (2020). Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. ex Flüggé. International Journal of Phytoremediation 22(1): 87-97.
  • Tai Y, Yang Y, Li Z, Yang Y, Wang J, Zhuang P, Zou B (2018). Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. Environmental Technology 39(16): 2138-2150.
  • Turan M, Angin I (2004). Organic chelate assisted phytoextraction of B. Cd. Mo and Pb from contaminated soils using two agricultural crop species. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 54(4): 221-231.
  • Turan M, Esringü A (2008). Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant, Soil and Environment 53(1): 7-15.
  • Turgut C, Katie Pepe M, Cutright TJ (2004). The effect of EDTA and citric acid on phytoremediation of Cd. Cr. and Ni from soil using Helianthus annuus. Environmental Pollution 131(1): 147-154.
  • Vargas C, Pérez-Esteban J, Escolástico C, Masaguer A, Moliner A, (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research 23(13): 13521–13530.
  • Wilkings DA (1978). The Measurement of tolerance to edaphic factors by means of root growth. New Phytologist 80(3), 623-633.
  • Zaier H, Ghnaya T, Ghabriche R, Chmingui W, Lakhdar A, Lutts S, Adbelly C (2014). EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Environmental Science and Pollution Research 21(12): 7607-7615.
  • Zayed A, Lytle CM, Terry N (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta 206(2): 284-292.
  • Zhang H, Guo Q, Yang J, Ma J, Chen G, Chen T, Zhu G, Wang J, Zhang G, Wang X, Shao C (2016). Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicology and Environmental Safety 133: 57-62.
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Aslıhan İpek Tanyıldız 0000-0003-0563-8874

Dudu Duygu Kılıç 0000-0001-6425-6062

Burak Sürmen 0000-0002-4055-613X

Project Number FMB-BAP 17-0246
Publication Date May 15, 2022
Acceptance Date December 31, 2021
Published in Issue Year 2022

Cite

APA İpek Tanyıldız, A., Kılıç, D. D., & Sürmen, B. (2022). Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Anatolian Journal of Botany, 6(1), 13-17. https://doi.org/10.30616/ajb.1030084
AMA İpek Tanyıldız A, Kılıç DD, Sürmen B. Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Ant J Bot. May 2022;6(1):13-17. doi:10.30616/ajb.1030084
Chicago İpek Tanyıldız, Aslıhan, Dudu Duygu Kılıç, and Burak Sürmen. “Phytoremediation Efficiencies of Brassica Napus and Chenopodium Quinoa in Soils Contaminated With Pb Using Chelator Complexes”. Anatolian Journal of Botany 6, no. 1 (May 2022): 13-17. https://doi.org/10.30616/ajb.1030084.
EndNote İpek Tanyıldız A, Kılıç DD, Sürmen B (May 1, 2022) Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Anatolian Journal of Botany 6 1 13–17.
IEEE A. İpek Tanyıldız, D. D. Kılıç, and B. Sürmen, “Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes”, Ant J Bot, vol. 6, no. 1, pp. 13–17, 2022, doi: 10.30616/ajb.1030084.
ISNAD İpek Tanyıldız, Aslıhan et al. “Phytoremediation Efficiencies of Brassica Napus and Chenopodium Quinoa in Soils Contaminated With Pb Using Chelator Complexes”. Anatolian Journal of Botany 6/1 (May 2022), 13-17. https://doi.org/10.30616/ajb.1030084.
JAMA İpek Tanyıldız A, Kılıç DD, Sürmen B. Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Ant J Bot. 2022;6:13–17.
MLA İpek Tanyıldız, Aslıhan et al. “Phytoremediation Efficiencies of Brassica Napus and Chenopodium Quinoa in Soils Contaminated With Pb Using Chelator Complexes”. Anatolian Journal of Botany, vol. 6, no. 1, 2022, pp. 13-17, doi:10.30616/ajb.1030084.
Vancouver İpek Tanyıldız A, Kılıç DD, Sürmen B. Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Ant J Bot. 2022;6(1):13-7.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.