Investigation of the allelopathic effects of lyophilized ethanol extract of Xanthoparmelia somloensis (Gyelnik) Hale lichen on tomato plant
Year 2022,
, 39 - 43, 15.05.2022
Ömer Bingöl
,
Abdülhamit Battal
,
Emre Erez
,
Ali Aslan
Abstract
All organisms in nature interact and compete with each other. Various groups of organisms such as algae, lichens, crops and weeds have been found as allelopathic interaction and it is known that lichens have many potent secondary metabolites. The aim of this study was to determine the allelopathic effects of lyophilized ethanolic extract of Xanthoparmelia somloensis (Gyelnik) Hale lichen (XS) on tomato (Lycopersicum esculentum L.) germination and early development stage. Obtained lyophilized ethanolic extracts of XS lichen at concentrations of 50 ppm (XS-50), 100 ppm (XS-100), 200 ppm (XS-200) and 400 ppm (XS-400) were applied to tomato seeds and seedlings. In order to determine the effects caused by the extracts, germination rate and seedling growth parameters (vigor index, length, fresh weight, relative water content and pigment contents) were analyzed. According to the obtained data, there were significant decreases in germination rate and vigor index values depending on the increase in lichen extract concentration. Similar effects were also observed in root and shoot length and pigment contents. However, results of the lowest application (XS-50) were similar to control except root length and carotenoid content. The data obtained from this study exhibited that the lichen Xanthoparmelia somloensis has allelopathic effects and has the potential to be used for agricultural purposes.
Supporting Institution
Yüzüncü yıl Üniversitesi BAP birimi
Project Number
FYD-2021-9409
Thanks
We would like to Van Yüzüncü Yıl University Scientific Research Projects Department for its financial support (Grant number FYD-2021-9409).
References
- Bačkor M, Klemová K, Bačkorová M., Ivanova V (2010). Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. Journal of Chemical Ecology 36: 405-411.
- Belz RG, Hurle K (2005). Differential exudation of two benzoxazinoids-one of the determining factors for seedling allelopathy of Triticeae species. Journal of Agricultural and Food Chemistry 53: 250-261.
- Einhellig F (2004) Mode of allelochemical action of phenolic compounds. In Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy. Chemistry and mode of action of allelochemicals. Boca Raton: CRC Press.
- Frahm JP, Specht A, Reifenrath K, Vargas YL (2000). Allelopathic effects of crustose lichens, epiphytic bryophytes and vascular plants. Nova Hedwigia 70(1): 245-254.
- Goga M, Elečko J, Marcinčinová M, Ručová D, Bačkorová M, Bačkor M (2018). Lichen Metabolites: An overview of some secondary metabolites and their biological potential. In: Merillon JM., Ramawat K. (eds) Co-Evolution of secondary metabolites. Reference Series in Phytochemistry. Switzerland: Springer, Cham.
- Green TGA (2008). Lichens in arctic, antarctic and alpine ecosystems. In: Beck A, Lange OL (eds) Die o¨kologische Rolle der Flechten. Rundgespra¨che der Kommission fu¨r O¨kologie 36, Bayerische Akademie der Wissenschaften. Mu¨nchen: Verlag Dr. Friedrich Pfeil.
- Hauck M, Huneck S (2007). Lichen substances affect metal adsorption in Hypogymnia physodes. Journal of Chemical Ecology 33: 219-223.
- Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. Circular. Berkeley: California agricultural experiment station.
- Kruse M, Strandberg M, Strandberg B (2000). Ecological Effects of Allelopathic Plants - a Review. Silkeborg: National Environmental Research Institute.
- Latkowska E, Lechowski Z, Bialczyk J, Pilarski J (2006). Photosynthesis and water relations in tomato plants cultivated long-term in media containing (+)-usnic acid. Journal of Chemical Ecology 32: 2053-2066.
- Lawrey JD (1995). The chemical ecology of lichen mycoparasites: a re view. Canadian Journal of Botany 73: 603-608.
- Lechowski Z, Mej E, Bialczyk J (2006). Bialczyk Accumulation of biomass and some macroelements in tomato plants grown in media with (+) usnic acid. Environmental and Experimental Botany 56: 239-244.
- Lichtenthaler HK (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.
- Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni RJ, Duke SO, Nanayakkara, DA, Khan, Abourashed EA (2002). The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate on chlorophyll dioxygenase. Phytochemitry 60: 281-288.
- Romagni JG, Meazza G, Nanayakkara NPD, Dayan FE (2000). The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. The Federation of European Biochemical Societies Letters 480: 301-305.
- Peres, MTLP, Simionatto E, Hess SC, Bonani VFL, Candido ACS, Castellı C (2009). Estudos químicos e biológicos de Microgramma vacciniifolia (Langsd. & Fisch.) Copel (Polypodiaceae). Química Nova 32(4): 897-901.
- Sedia EG, Ehrenfeld JG (2003). Lichens and mosses promote alternate stable plant communities in the New Jersey Pineland. Oikos 100: 447-458.
- Shukla V, Joshi G, Rawat M (2010). Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry Reviews 9: 303-314.
- Singh AD, Singh N (2009). Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth and Regulation 58: 163-171.
- Smart RE, Bingham GE (1974). Rapid estimates of relative water content. Plant Physiology 53: 258-260.
- Tawaha AM, Turk MA (2003). Allelopathic effects of black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). Journal of Agronomy and Crop Science 189:298-303.
Xanthoparmelia somloensis (Gyelnik) Hale likeninin liyofilize etanol ekstraktının domates bitkisi üzerindeki allelopatik etkilerinin araştırılması
Year 2022,
, 39 - 43, 15.05.2022
Ömer Bingöl
,
Abdülhamit Battal
,
Emre Erez
,
Ali Aslan
Abstract
Doğadaki tüm organizmalar birbirleriyle etkileşim ve rekabet halindedir. Algler, likenler, kültür bitkileri ve yabani otlar gibi çeşitli organizma gruplarının allelopatik etkileşime sahip oldukları ve likenlerin birçok güçlü sekonder metabolite sahip olduğu bilinmektedir. Bu çalışmanın amacı, Xanthoparmelia somloensis (Gyelnik) Hale liken (XS) liyofilize etanolik ekstraktının domates (Lycopersicum esculentum L.) çimlenmesi ve erken gelişme aşaması üzerindeki allelopatik etkilerinin belirlenmesidir. 50 ppm (XS-50), 100 ppm (XS-100), 200 ppm (XS-200) ve 400 ppm (XS-400) konsantrasyonlarında XS likeninin elde edilen liyofilize etanolik ekstreleri domates tohumlarına ve fidelerine uygulandı. Ekstraktların neden olduğu etkileri belirlemek için, çimlenme oranı ve fide büyüme parametreleri (canlılık indeksi, uzunluk, taze ağırlık, bağıl su içeriği ve pigment içeriği) analiz edildi. Elde edilen verilere göre liken ekstraktı konsantrasyonundaki artışa bağlı olarak çimlenme hızı ve vigor indeks değerlerinde önemli düşüşler tespit edildi. Benzer etkiler kök ve sürgün uzunluğu ve pigment içeriklerinde de gözlendi. Ancak en düşük uygulamanın (XS-50) sonuçları kök uzunluğu ve karotenoid içeriği dışında kontrole benzerlik gösterdi. Bu çalışmadan elde edilen veriler, Xanthoparmelia somloensis'in allelopatik etkilere neden olduğu ve tarımsal amaçlı kullanım potansiyeline sahip olduğunu göstermiştir.
Project Number
FYD-2021-9409
References
- Bačkor M, Klemová K, Bačkorová M., Ivanova V (2010). Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. Journal of Chemical Ecology 36: 405-411.
- Belz RG, Hurle K (2005). Differential exudation of two benzoxazinoids-one of the determining factors for seedling allelopathy of Triticeae species. Journal of Agricultural and Food Chemistry 53: 250-261.
- Einhellig F (2004) Mode of allelochemical action of phenolic compounds. In Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy. Chemistry and mode of action of allelochemicals. Boca Raton: CRC Press.
- Frahm JP, Specht A, Reifenrath K, Vargas YL (2000). Allelopathic effects of crustose lichens, epiphytic bryophytes and vascular plants. Nova Hedwigia 70(1): 245-254.
- Goga M, Elečko J, Marcinčinová M, Ručová D, Bačkorová M, Bačkor M (2018). Lichen Metabolites: An overview of some secondary metabolites and their biological potential. In: Merillon JM., Ramawat K. (eds) Co-Evolution of secondary metabolites. Reference Series in Phytochemistry. Switzerland: Springer, Cham.
- Green TGA (2008). Lichens in arctic, antarctic and alpine ecosystems. In: Beck A, Lange OL (eds) Die o¨kologische Rolle der Flechten. Rundgespra¨che der Kommission fu¨r O¨kologie 36, Bayerische Akademie der Wissenschaften. Mu¨nchen: Verlag Dr. Friedrich Pfeil.
- Hauck M, Huneck S (2007). Lichen substances affect metal adsorption in Hypogymnia physodes. Journal of Chemical Ecology 33: 219-223.
- Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. Circular. Berkeley: California agricultural experiment station.
- Kruse M, Strandberg M, Strandberg B (2000). Ecological Effects of Allelopathic Plants - a Review. Silkeborg: National Environmental Research Institute.
- Latkowska E, Lechowski Z, Bialczyk J, Pilarski J (2006). Photosynthesis and water relations in tomato plants cultivated long-term in media containing (+)-usnic acid. Journal of Chemical Ecology 32: 2053-2066.
- Lawrey JD (1995). The chemical ecology of lichen mycoparasites: a re view. Canadian Journal of Botany 73: 603-608.
- Lechowski Z, Mej E, Bialczyk J (2006). Bialczyk Accumulation of biomass and some macroelements in tomato plants grown in media with (+) usnic acid. Environmental and Experimental Botany 56: 239-244.
- Lichtenthaler HK (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.
- Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni RJ, Duke SO, Nanayakkara, DA, Khan, Abourashed EA (2002). The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate on chlorophyll dioxygenase. Phytochemitry 60: 281-288.
- Romagni JG, Meazza G, Nanayakkara NPD, Dayan FE (2000). The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. The Federation of European Biochemical Societies Letters 480: 301-305.
- Peres, MTLP, Simionatto E, Hess SC, Bonani VFL, Candido ACS, Castellı C (2009). Estudos químicos e biológicos de Microgramma vacciniifolia (Langsd. & Fisch.) Copel (Polypodiaceae). Química Nova 32(4): 897-901.
- Sedia EG, Ehrenfeld JG (2003). Lichens and mosses promote alternate stable plant communities in the New Jersey Pineland. Oikos 100: 447-458.
- Shukla V, Joshi G, Rawat M (2010). Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry Reviews 9: 303-314.
- Singh AD, Singh N (2009). Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth and Regulation 58: 163-171.
- Smart RE, Bingham GE (1974). Rapid estimates of relative water content. Plant Physiology 53: 258-260.
- Tawaha AM, Turk MA (2003). Allelopathic effects of black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). Journal of Agronomy and Crop Science 189:298-303.