Research Article
BibTex RIS Cite

Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey

Year 2021, , 58 - 64, 15.05.2021
https://doi.org/10.30616/ajb.890955

Abstract

The present study was made to determine the fatty acids composition and some minerals of five wild edible mushrooms species (Agaricus benesii (Pilát) Pilát, Amanita vaginata (Bull.) Lam., Leccinum aurantiacum (Bull.) Gray, Macrolepiota phaeodisca Bellù, Sarcodon imbricatus (L.) P. Karst.). Mushroom specimens, which were our research material, were collected from different localities in Tokat and Yozgat provinces. The minerals were examined in atomic absorption spectrophotometric (AAS) and fatty acids were detected by Gas chromatographic-mass spectrometry system (GC-MS) on dried mushrooms samples. In the result of analyses, six different minerals (Cu, Mn, Zn, Ni, Fe, Al) and six different fatty acids (pentadecanoic, palmitic, palmitoleic, stearic, oleic and linoleic acid) have been identified. The dominant fatty acid in basidiocarps of A. benesii and M. phaeodisca was linoleic acid (C18:2), and was determined as 62.58%, 45.02%, respectively. The dominant fatty acid in basidiocarps of A. vaginata, L. aurantiacum and S. imbricatus was oleic acid (C18:1), and was determined as 54.32%, 46.98% and 48.67%, respectively. The most abundant mineral in basidiocarp of S. imbricatus was Zinc (Zn) with 112.29 mg/kg. Also it was found that aluminium (Al) was the most abundant mineral in other ones with quantities ranging from 93.77–3349.02 mg/kg.

References

  • Akyüz M, Kırbağ S, Karatepe M, Güvenç M, Zengin F (2011). Vitamin and fatty acid composition of P. eryngii var. eryngii. Bitlis Eren Univ J Sci & Technol 1: 16-20.
  • Al-Fartusie FS, Mohssan SN (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science 5(3): 127-136.
  • Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology 46: 2742-2747.
  • Barros L, Baptista P, Correia DM, Morais JS, Ferreira IC (2007). Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. Journal of Agricultural and Food Chemistry 55(12): 4781-4788.
  • Bengü AŞ (2019). Some elements and fatty acid profiles of three different wild edible mushrooms from Tokat province in Turkey. Progress in Nutrition 21(1): 189-193.
  • Bengü AŞ, Çınar Yılmaz H, Türkekul İ, Işık H (2019). Doğadan toplanan ve kültürü yapılan Pleurotus ostreatus ve Agaricus bisporus mantarlarının toplam protein, vitamin ve yağ asidi içeriklerinin belirlenmesi. Turkish Journal of Agricultural and Natural Sciences 6(2): 222-229.
  • Bon M (1987). The Mushrooms and Toadstools of Britain and North-Western Europe. London: Hodder-Stoughton.
  • Breitenbach J, Kränzlin F (1995). Fungi of Switzerland. Vol: 4, Agarics 2. Luzern: Verlag Mykologia.
  • Brzezicha-Cirocka J, Mędyk M, Falandysz J, Szefer P (2016). Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in eastern Poland. ESPR 23: 21517-21522. Christie WW (1990). The analysis of fatty acids, in gas chromatography and lipids. Glaskow: The Oil Press Ltd.
  • Christie WW (1998). Gas chromatography–mass spectrometry methods for structural analysis of fatty acids. Lipids 33: 343-353.
  • Çolak A, Faiz Ö, Sesli E (2009). Nutritional composition of some wild edible mushrooms. Turkish Journal of Biochemistry 34(1): 25-31.
  • Dembitsky VM, Terent’ev AO, Levitsky DO (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products 4(4): 218-223.
  • Doğan HH, Akbaş G (2013). Biological activity and fatty acid composition of Caesar’s mushroom. Pharmaceutical Biology 51(7): 863-871.
  • Doğan HH (2016). Fatty acid compositions of two mushrooms in Turkey. International Journal of Recent Scientific Research 7(4): 863-871.
  • Duda-Chodak A, Błaszczyk U (2008). The impact of nickel on human health. Journal of Elementology 13(4): 685-696.
  • Ergönül PG, Ergönül B, Kalyoncu F, Akata I (2012). Fatty acid compositions of five wild edible mushroom species collected from Turkey. International Journal of Pharmacology 8(5): 463-466.
  • Fernandesa Â, Barros L, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2013). Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. Food Science and Technology 54(2): 493-499.
  • Goyal R, Grewal RB, Goyal RK (2015). Fatty acid composition and dietary fibre constituents of mushrooms of North India. Emirates Journal of Food and Agriculture 27(12): 927-930.
  • Hara A, Radin NS (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry 90: 420-426.
  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1996). Ainsworth and Bisby's Dictionary of the Fungi, 8th edition, Wallingford: CAB International.
  • Hawksworth DL (2001). The magnitude of fungal diversity: the 1.5 million specie estimate revisited. Mycological Research 105(12): 1422-1432.
  • Işıldak Ö, Türkekul İ, Elmastaş M, Tüzen M (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry 86: 547-552.
  • Jonnalagadda SB, Pienaar DH, Haripersad K (2006). Elemental distribution in selected Agaricus and Rhizina mushrooms in South Africa. Journal of Environmental Science and Health Part A 41(3): 507-514.
  • Jordan M (1995). The Encyclopedia of Fungi of Britain and Europe. London: Frances Lincoln.
  • Karliński L, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2007). Fatty acid composition of various ectomycorrhizal fungi and ectomycorrhizas of Norway spruce. Soil Biology and Biochemistry 39: 854-866.
  • Kawahara M, Konoha K, Nagata T, Sadakane Y (2007). Aluminum and human health: Its ıntake, bioavailability and neurotoxicity. Biomed Res Trace Elem 18(3): 211-220.
  • Keleş A, Gençcelep H, Demirel K (2017). Elemental composition of naturally growing wild edible mushroom. Journal of Natural Product and Plant Resources 7(4): 37-44.
  • Moser M (1983). Keys to Agarics and Boleti. Stuttgart: Gustav Fischer Verlag,
  • Orsine JVC, Novaes MRCG, Asquieri ER (2012). Nutritional value of Agaricus sylvaticus; mushroom grown in Brazil. Nutrición Hospitalaria 27(2): 449-455.
  • Pedneault K, Angers P, Gosselın A, Tweddell RJ (2006). Fatty acid composition of lipids from mushrooms belonging to the family Boletaceae. Mycological research 110: 1179-1183.
  • Pekşen A (2013). Mantarların insan hayatı ve sağlığındaki yeri. Bahçe Haber 2: 10-14.
  • Phillips R (1981). Mushrooms and Other Fungi of Great Britain & Europe, London: Pan Books Ltd.
  • Pietrzak-Fiećko R, Gałgowska M, Bakuła S (2016). Fatty Acid Composition in Wild Boletus edulis from Poland. Italian Journal of Food Science 28(3): 402-411.
  • Radulescu C, Stihi C, Busuioc G, Popescu IV, Gheboianu AI, Cimpoca VGH (2010). Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Romanian Biotechnological Letters 15(4): 5444-5456.
  • Ribeiro B, Guedes de Pinho P, Andrade PB, Baptista P, Valentão P (2009). Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal 93: 29-35.
  • Türkekul İ, Çetin F, Elmastaş M (2017). Fatty acid composition and antioxidant capacity of some medicinal mushrooms in Turkey. Journal of Applied Biological Chemistry 60(1): 35-39.
  • Ravikrishnan V, Naik P, Ganesh S, Rajashekhar M (2015). Amino acid, fatty acid and mineral profıle of mushroom Lentinus polychrous lév. from Western Ghats, Southern India. The International Journal of Plant, Animal and Environmental Sciences 5(1): 278-281.
  • Wada O (2004). What are trace elements? Their deficiency and excess states. Journal of the Japan Medical Association 47(8): 351-358.
  • Wretensjö I, Svensson L, Christie WW (1990). Gas chromatographic—mass spectrometric identification of the fatty acids in borage oil using the picolinyl ester derivatives. Journal of Chromatography A 521: 89-97.
  • Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR, Harvatine KJ (2015). Fatty acid profile of wild and cultivated edible mushrooms collected from Ethiopia. Journal of Nutrition & Food Sciences 5(3): 360.
  • Yılmaz N, Solmaz M, Türkekul İ, Elmastaş M (2006). Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chemistry 99: 168-174.

Türkiye'de Tokat ve Yozgat illerinde toplanan beş farklı yenilebilir mantar türünün bazı mineralleri ve yağ asidi bileşimleri

Year 2021, , 58 - 64, 15.05.2021
https://doi.org/10.30616/ajb.890955

Abstract

Bu çalışma, beş yabani yenilebilir mantar türünün (Agaricus benesii (Pilát) Pilát, Amanita vaginata (Bull.) Lam., Leccinum aurantiacum (Bull.) Gray, Macrolepiota phaeodisca Bellù, Sarcodon imbricatus (L.) P. Karst.)’un yağ asitleri bileşimini ve bazı minerallerini belirlemek için yapılmıştır.. Araştırma materyalimiz olan mantar örnekleri Tokat ve Yozgat illerinin farklı yörelerinden toplanmıştır. Kuru mantar örneklerinde mineraller atomik absorpsiyon spektrofotometrik (AAS) ve yağ asitleri Gaz kromatografik-kütle spektrometri sistemi (GC-MS) ile tespit edilmiştir. Analizler sonucunda altı farklı mineral (Cu, Mn, Zn, Ni, Fe, Al) ve altı farklı yağ asidi (pentadekanoik, palmitik, palmitoleik, stearik, oleik ve linoleik asit) tanımlanmıştır. Agaricus benesii ve M. phaeodisca'nın basidiokarplarında dominant yağ asidi linoleik asit (C18: 2) olup, sırasıyla% 62.58,% 45.02 olarak belirlenmiştir. A. vaginata, L. aurantiacum ve S. imbricatus'un basidiokarplarında dominant yağ asidi oleik asit (C18: 1) olup, sırasıyla% 54.32,% 46.98 ve% 48.67 olarak belirlenmiştir. S. imbricatus'un basidiocarp'ında en bol bulunan mineral 112.29 mg/kg ile Çinko (Zn) idi. Ayrıca 93.77–3349.02 mg/kg arasında değişen miktarlarda alüminyumun (Al) diğerlerinde en bol bulunan mineral olduğu bulunmuştur.

References

  • Akyüz M, Kırbağ S, Karatepe M, Güvenç M, Zengin F (2011). Vitamin and fatty acid composition of P. eryngii var. eryngii. Bitlis Eren Univ J Sci & Technol 1: 16-20.
  • Al-Fartusie FS, Mohssan SN (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science 5(3): 127-136.
  • Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology 46: 2742-2747.
  • Barros L, Baptista P, Correia DM, Morais JS, Ferreira IC (2007). Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. Journal of Agricultural and Food Chemistry 55(12): 4781-4788.
  • Bengü AŞ (2019). Some elements and fatty acid profiles of three different wild edible mushrooms from Tokat province in Turkey. Progress in Nutrition 21(1): 189-193.
  • Bengü AŞ, Çınar Yılmaz H, Türkekul İ, Işık H (2019). Doğadan toplanan ve kültürü yapılan Pleurotus ostreatus ve Agaricus bisporus mantarlarının toplam protein, vitamin ve yağ asidi içeriklerinin belirlenmesi. Turkish Journal of Agricultural and Natural Sciences 6(2): 222-229.
  • Bon M (1987). The Mushrooms and Toadstools of Britain and North-Western Europe. London: Hodder-Stoughton.
  • Breitenbach J, Kränzlin F (1995). Fungi of Switzerland. Vol: 4, Agarics 2. Luzern: Verlag Mykologia.
  • Brzezicha-Cirocka J, Mędyk M, Falandysz J, Szefer P (2016). Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in eastern Poland. ESPR 23: 21517-21522. Christie WW (1990). The analysis of fatty acids, in gas chromatography and lipids. Glaskow: The Oil Press Ltd.
  • Christie WW (1998). Gas chromatography–mass spectrometry methods for structural analysis of fatty acids. Lipids 33: 343-353.
  • Çolak A, Faiz Ö, Sesli E (2009). Nutritional composition of some wild edible mushrooms. Turkish Journal of Biochemistry 34(1): 25-31.
  • Dembitsky VM, Terent’ev AO, Levitsky DO (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products 4(4): 218-223.
  • Doğan HH, Akbaş G (2013). Biological activity and fatty acid composition of Caesar’s mushroom. Pharmaceutical Biology 51(7): 863-871.
  • Doğan HH (2016). Fatty acid compositions of two mushrooms in Turkey. International Journal of Recent Scientific Research 7(4): 863-871.
  • Duda-Chodak A, Błaszczyk U (2008). The impact of nickel on human health. Journal of Elementology 13(4): 685-696.
  • Ergönül PG, Ergönül B, Kalyoncu F, Akata I (2012). Fatty acid compositions of five wild edible mushroom species collected from Turkey. International Journal of Pharmacology 8(5): 463-466.
  • Fernandesa Â, Barros L, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2013). Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. Food Science and Technology 54(2): 493-499.
  • Goyal R, Grewal RB, Goyal RK (2015). Fatty acid composition and dietary fibre constituents of mushrooms of North India. Emirates Journal of Food and Agriculture 27(12): 927-930.
  • Hara A, Radin NS (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry 90: 420-426.
  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1996). Ainsworth and Bisby's Dictionary of the Fungi, 8th edition, Wallingford: CAB International.
  • Hawksworth DL (2001). The magnitude of fungal diversity: the 1.5 million specie estimate revisited. Mycological Research 105(12): 1422-1432.
  • Işıldak Ö, Türkekul İ, Elmastaş M, Tüzen M (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry 86: 547-552.
  • Jonnalagadda SB, Pienaar DH, Haripersad K (2006). Elemental distribution in selected Agaricus and Rhizina mushrooms in South Africa. Journal of Environmental Science and Health Part A 41(3): 507-514.
  • Jordan M (1995). The Encyclopedia of Fungi of Britain and Europe. London: Frances Lincoln.
  • Karliński L, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2007). Fatty acid composition of various ectomycorrhizal fungi and ectomycorrhizas of Norway spruce. Soil Biology and Biochemistry 39: 854-866.
  • Kawahara M, Konoha K, Nagata T, Sadakane Y (2007). Aluminum and human health: Its ıntake, bioavailability and neurotoxicity. Biomed Res Trace Elem 18(3): 211-220.
  • Keleş A, Gençcelep H, Demirel K (2017). Elemental composition of naturally growing wild edible mushroom. Journal of Natural Product and Plant Resources 7(4): 37-44.
  • Moser M (1983). Keys to Agarics and Boleti. Stuttgart: Gustav Fischer Verlag,
  • Orsine JVC, Novaes MRCG, Asquieri ER (2012). Nutritional value of Agaricus sylvaticus; mushroom grown in Brazil. Nutrición Hospitalaria 27(2): 449-455.
  • Pedneault K, Angers P, Gosselın A, Tweddell RJ (2006). Fatty acid composition of lipids from mushrooms belonging to the family Boletaceae. Mycological research 110: 1179-1183.
  • Pekşen A (2013). Mantarların insan hayatı ve sağlığındaki yeri. Bahçe Haber 2: 10-14.
  • Phillips R (1981). Mushrooms and Other Fungi of Great Britain & Europe, London: Pan Books Ltd.
  • Pietrzak-Fiećko R, Gałgowska M, Bakuła S (2016). Fatty Acid Composition in Wild Boletus edulis from Poland. Italian Journal of Food Science 28(3): 402-411.
  • Radulescu C, Stihi C, Busuioc G, Popescu IV, Gheboianu AI, Cimpoca VGH (2010). Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Romanian Biotechnological Letters 15(4): 5444-5456.
  • Ribeiro B, Guedes de Pinho P, Andrade PB, Baptista P, Valentão P (2009). Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal 93: 29-35.
  • Türkekul İ, Çetin F, Elmastaş M (2017). Fatty acid composition and antioxidant capacity of some medicinal mushrooms in Turkey. Journal of Applied Biological Chemistry 60(1): 35-39.
  • Ravikrishnan V, Naik P, Ganesh S, Rajashekhar M (2015). Amino acid, fatty acid and mineral profıle of mushroom Lentinus polychrous lév. from Western Ghats, Southern India. The International Journal of Plant, Animal and Environmental Sciences 5(1): 278-281.
  • Wada O (2004). What are trace elements? Their deficiency and excess states. Journal of the Japan Medical Association 47(8): 351-358.
  • Wretensjö I, Svensson L, Christie WW (1990). Gas chromatographic—mass spectrometric identification of the fatty acids in borage oil using the picolinyl ester derivatives. Journal of Chromatography A 521: 89-97.
  • Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR, Harvatine KJ (2015). Fatty acid profile of wild and cultivated edible mushrooms collected from Ethiopia. Journal of Nutrition & Food Sciences 5(3): 360.
  • Yılmaz N, Solmaz M, Türkekul İ, Elmastaş M (2006). Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chemistry 99: 168-174.
There are 41 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

A. Şükrü Bengü 0000-0002-7635-4855

Hakan Işık 0000-0001-8241-0078

İbrahim Türkekul 0000-0002-1036-9835

Handan Çınar Yılmaz 0000-0001-7215-7822

Publication Date May 15, 2021
Acceptance Date April 27, 2021
Published in Issue Year 2021

Cite

APA Bengü, A. Ş., Işık, H., Türkekul, İ., Çınar Yılmaz, H. (2021). Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey. Anatolian Journal of Botany, 5(1), 58-64. https://doi.org/10.30616/ajb.890955
AMA Bengü AŞ, Işık H, Türkekul İ, Çınar Yılmaz H. Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey. Ant J Bot. May 2021;5(1):58-64. doi:10.30616/ajb.890955
Chicago Bengü, A. Şükrü, Hakan Işık, İbrahim Türkekul, and Handan Çınar Yılmaz. “Some Minerals and Fatty Acid Compositions of Five Different Wild Edible Mushrooms Species Collected in Tokat and Yozgat Provinces in Turkey”. Anatolian Journal of Botany 5, no. 1 (May 2021): 58-64. https://doi.org/10.30616/ajb.890955.
EndNote Bengü AŞ, Işık H, Türkekul İ, Çınar Yılmaz H (May 1, 2021) Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey. Anatolian Journal of Botany 5 1 58–64.
IEEE A. Ş. Bengü, H. Işık, İ. Türkekul, and H. Çınar Yılmaz, “Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey”, Ant J Bot, vol. 5, no. 1, pp. 58–64, 2021, doi: 10.30616/ajb.890955.
ISNAD Bengü, A. Şükrü et al. “Some Minerals and Fatty Acid Compositions of Five Different Wild Edible Mushrooms Species Collected in Tokat and Yozgat Provinces in Turkey”. Anatolian Journal of Botany 5/1 (May 2021), 58-64. https://doi.org/10.30616/ajb.890955.
JAMA Bengü AŞ, Işık H, Türkekul İ, Çınar Yılmaz H. Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey. Ant J Bot. 2021;5:58–64.
MLA Bengü, A. Şükrü et al. “Some Minerals and Fatty Acid Compositions of Five Different Wild Edible Mushrooms Species Collected in Tokat and Yozgat Provinces in Turkey”. Anatolian Journal of Botany, vol. 5, no. 1, 2021, pp. 58-64, doi:10.30616/ajb.890955.
Vancouver Bengü AŞ, Işık H, Türkekul İ, Çınar Yılmaz H. Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in Tokat and Yozgat provinces in Turkey. Ant J Bot. 2021;5(1):58-64.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.