Research Article
BibTex RIS Cite

Comparative vascular anatomies of some orchid species

Year 2021, Volume: 5 Issue: 2, 84 - 90, 15.11.2021
https://doi.org/10.30616/ajb.905956

Abstract

In this study, we examined the vascular anatomy of leaves with different morphological features of 11 orchid species. Plant samples were collected from various localities in the Black Sea Region. Fresh leaves were dried and stocked, and their vascular structures were analyzed by clearing and staining. Significant differences were determined in the leaves of taxa in terms of characters such as total leaf perimeter and area, number of veins and nodes, total vein length, total vein area, average vein length, average vein width, average vein surface area, average vein volume, and average areolar area. According to the findings, the topological and morphometric features of the veining can reflect the systematic and phylogenetic relationships of orchids.

Supporting Institution

TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU

Project Number

114Z702

Thanks

This research was supported by the Scientific and Technological Research Council of Turkey (114Z702).

References

  • Agrawal AA, Konno K (2009). Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annual Review of Ecology Evolution and Systematics 40:311-331.
  • Arditti J (1977). Orchid biology, reviews and perspectives. Ithaca: Cornel Univ. Press.
  • Bateman RM, Hollingsworth PM, Preston J, Yi-Bo L, Pridgeon AM, Chase MW (2003). Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Botanical journal of the Linnean Society 142(1): 1-40.
  • Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, Majalap N, Burslem DFRP, Teh YA, Malhi Y (2020). Linking functional traits to multiscale statistics of leaf venation networks. New Phytologist 228: 1796-1810.
  • Blonder B, Salinas N, Bentley LP, Shenkin A, Chambi Porroa PO, Valdez Tejeira Y, Asner GP (2018). Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon Elevation Gradient. Journal of Ecology 106(4): 1683-1699.
  • Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology letters 14(2): 91-100.
  • Brodribb TJ, Bienaimé D, Marmottant P. (2016). Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences 113(17): 4865-4869.
  • Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144(4): 1890-1898.
  • Cameron KM, Dickison WC, (1998). Foliar architecture of vanilloid orchids: insights into the evolution of reticulate leaf venation in monocotyledons. Botanical Journal of the Linnean Society 128(1): 45-70.
  • Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Goldman DH (1999). A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. American Journal of Botany 86(2): 208-224.
  • Conklin PA, Strable J, Li S, Scanlon MJ (2019). On the mechanisms of development in monocot and eudicot leaves. New Phytologist 221(2): 706-724.
  • Dressler RL (1993). Phylogeny and classification of the orchid family. Oregon: Dioscorides Press.
  • Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Millam KC (2005). Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: Evidence from an ndhF phylogeny. Proceedings of the Royal Society B: Biological Sciences 272(1571): 1481-1490.
  • Güner A, Aslan S (Eds.) (2012). Türkiye bitkileri listesi (damarlı bitkiler). İstanbul: Nezahat Gökyiǧit Botanik Bahçesi Yayınları.
  • Hossain MM (2011). Therapeutic orchids: traditional uses and recent advances an overview. Fitoterapia 82(2): 102-140.
  • John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017). The anatomical and compositional basis of leaf mass per area. Ecology Letters 20(4): 412-425.
  • Katifori E, Szöllősi GJ, Magnasco MO (2010). Damage and fluctuations induce loops in optimal transport networks. Physical Review Letters 104(4): 048704.
  • Larese MG, Namías R, Craviotto RM, Arango MR, Gallo C, Granitto PM (2014). Automatic classification of legumes using leaf vein image features. Pattern Recognition 47(1): 158-168.
  • Mani M, Rasangam L, Selvam P, Shekhawat MS (2021). Micro‐morpho‐anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don. Microscopy Research and Technique 84: 712-722.
  • Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. The New Phytologist 143(1): 19-31.
  • Ohtsuka A, Sack L, Taneda H (2018). Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant, Cell and Environment 41(2): 342-353.
  • Price CA, Symonova O, Mileyko Y, Hilley T, Weitz JS (2011). Leaf extraction and analysis framework graphical user interface: Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiology 155(1): 236-245.
  • Pridgeon AM (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 1. Intergeneric relationships and polyphyly of Orchis sensu lato. Lindleyana 12: 89-109.
  • Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Annals of Botany 87(5): 553-566.
  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3(1): 1-10.
  • Sezik EE (1984). Orkidelerimiz: Türkiye'nin orkideleri. İstanbul: Sandoz Kültür Yayınları.
  • Vasco A, Thadeo M, Conover M, Daly DC (2014). Preparation of Samples for Leaf Architecture Studies, a Method for Mounting Cleared Leaves. Applications in Plant Sciences 2(9): 1400038.
  • Vincent JF (1982). The mechanical design of grass. Journal of Materials Science 17(3): 856-860.

Bazı orkide türlerinin karşılaştırmalı damar anatomileri

Year 2021, Volume: 5 Issue: 2, 84 - 90, 15.11.2021
https://doi.org/10.30616/ajb.905956

Abstract

Bu çalışmada 11 orkide türüne ait farklı morfolojik özellikleri olan yaprakların damar anatomileri incelenmiştir. Bitki örnekleri Karadeniz Bölgesi’ndeki çeşitli lokalitelerden toplanmıştır. Taze yapraklar kurutularak stoklanmış, saydamlaştırma ve boyama işlemi uygulanarak damar yapıları analiz edilmiştir. Taksonların yapraklarında toplam yaprak çevresi ve alanı, damar ve boğum sayısı, toplam damar uzunluğu, toplam damar alanı, ortalama damar uzunluğu, ortalama damar genişliği, ortalama damar yüzey alanları, ortalama damar hacmi ve ortalama areol alanı gibi karakterler bakımından önemli farklılıklar tespit edilmiştir. Bulgulara göre damarlanmanın topolojik ve morfometrik özellikleri, orkidelerin sistematik ve filogenetik ilişkilerini yansıtabilir.

Project Number

114Z702

References

  • Agrawal AA, Konno K (2009). Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annual Review of Ecology Evolution and Systematics 40:311-331.
  • Arditti J (1977). Orchid biology, reviews and perspectives. Ithaca: Cornel Univ. Press.
  • Bateman RM, Hollingsworth PM, Preston J, Yi-Bo L, Pridgeon AM, Chase MW (2003). Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Botanical journal of the Linnean Society 142(1): 1-40.
  • Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, Majalap N, Burslem DFRP, Teh YA, Malhi Y (2020). Linking functional traits to multiscale statistics of leaf venation networks. New Phytologist 228: 1796-1810.
  • Blonder B, Salinas N, Bentley LP, Shenkin A, Chambi Porroa PO, Valdez Tejeira Y, Asner GP (2018). Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon Elevation Gradient. Journal of Ecology 106(4): 1683-1699.
  • Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology letters 14(2): 91-100.
  • Brodribb TJ, Bienaimé D, Marmottant P. (2016). Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences 113(17): 4865-4869.
  • Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144(4): 1890-1898.
  • Cameron KM, Dickison WC, (1998). Foliar architecture of vanilloid orchids: insights into the evolution of reticulate leaf venation in monocotyledons. Botanical Journal of the Linnean Society 128(1): 45-70.
  • Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Goldman DH (1999). A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. American Journal of Botany 86(2): 208-224.
  • Conklin PA, Strable J, Li S, Scanlon MJ (2019). On the mechanisms of development in monocot and eudicot leaves. New Phytologist 221(2): 706-724.
  • Dressler RL (1993). Phylogeny and classification of the orchid family. Oregon: Dioscorides Press.
  • Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Millam KC (2005). Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: Evidence from an ndhF phylogeny. Proceedings of the Royal Society B: Biological Sciences 272(1571): 1481-1490.
  • Güner A, Aslan S (Eds.) (2012). Türkiye bitkileri listesi (damarlı bitkiler). İstanbul: Nezahat Gökyiǧit Botanik Bahçesi Yayınları.
  • Hossain MM (2011). Therapeutic orchids: traditional uses and recent advances an overview. Fitoterapia 82(2): 102-140.
  • John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017). The anatomical and compositional basis of leaf mass per area. Ecology Letters 20(4): 412-425.
  • Katifori E, Szöllősi GJ, Magnasco MO (2010). Damage and fluctuations induce loops in optimal transport networks. Physical Review Letters 104(4): 048704.
  • Larese MG, Namías R, Craviotto RM, Arango MR, Gallo C, Granitto PM (2014). Automatic classification of legumes using leaf vein image features. Pattern Recognition 47(1): 158-168.
  • Mani M, Rasangam L, Selvam P, Shekhawat MS (2021). Micro‐morpho‐anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don. Microscopy Research and Technique 84: 712-722.
  • Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. The New Phytologist 143(1): 19-31.
  • Ohtsuka A, Sack L, Taneda H (2018). Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant, Cell and Environment 41(2): 342-353.
  • Price CA, Symonova O, Mileyko Y, Hilley T, Weitz JS (2011). Leaf extraction and analysis framework graphical user interface: Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiology 155(1): 236-245.
  • Pridgeon AM (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 1. Intergeneric relationships and polyphyly of Orchis sensu lato. Lindleyana 12: 89-109.
  • Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Annals of Botany 87(5): 553-566.
  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3(1): 1-10.
  • Sezik EE (1984). Orkidelerimiz: Türkiye'nin orkideleri. İstanbul: Sandoz Kültür Yayınları.
  • Vasco A, Thadeo M, Conover M, Daly DC (2014). Preparation of Samples for Leaf Architecture Studies, a Method for Mounting Cleared Leaves. Applications in Plant Sciences 2(9): 1400038.
  • Vincent JF (1982). The mechanical design of grass. Journal of Materials Science 17(3): 856-860.
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Şenay Süngü Şeker 0000-0003-4993-988X

Gülcan Şenel 0000-0002-8967-7290

Mustafa Kemal Akbulut 0000-0002-3362-785X

Project Number 114Z702
Publication Date November 15, 2021
Acceptance Date June 10, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Süngü Şeker, Ş., Şenel, G., & Akbulut, M. K. (2021). Comparative vascular anatomies of some orchid species. Anatolian Journal of Botany, 5(2), 84-90. https://doi.org/10.30616/ajb.905956
AMA Süngü Şeker Ş, Şenel G, Akbulut MK. Comparative vascular anatomies of some orchid species. Ant J Bot. November 2021;5(2):84-90. doi:10.30616/ajb.905956
Chicago Süngü Şeker, Şenay, Gülcan Şenel, and Mustafa Kemal Akbulut. “Comparative Vascular Anatomies of Some Orchid Species”. Anatolian Journal of Botany 5, no. 2 (November 2021): 84-90. https://doi.org/10.30616/ajb.905956.
EndNote Süngü Şeker Ş, Şenel G, Akbulut MK (November 1, 2021) Comparative vascular anatomies of some orchid species. Anatolian Journal of Botany 5 2 84–90.
IEEE Ş. Süngü Şeker, G. Şenel, and M. K. Akbulut, “Comparative vascular anatomies of some orchid species”, Ant J Bot, vol. 5, no. 2, pp. 84–90, 2021, doi: 10.30616/ajb.905956.
ISNAD Süngü Şeker, Şenay et al. “Comparative Vascular Anatomies of Some Orchid Species”. Anatolian Journal of Botany 5/2 (November 2021), 84-90. https://doi.org/10.30616/ajb.905956.
JAMA Süngü Şeker Ş, Şenel G, Akbulut MK. Comparative vascular anatomies of some orchid species. Ant J Bot. 2021;5:84–90.
MLA Süngü Şeker, Şenay et al. “Comparative Vascular Anatomies of Some Orchid Species”. Anatolian Journal of Botany, vol. 5, no. 2, 2021, pp. 84-90, doi:10.30616/ajb.905956.
Vancouver Süngü Şeker Ş, Şenel G, Akbulut MK. Comparative vascular anatomies of some orchid species. Ant J Bot. 2021;5(2):84-90.

Cited By

Orkide Yumru Ontogenisi
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi
https://doi.org/10.47495/okufbed.1061127

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.