Research Article
BibTex RIS Cite

Timokinonun perinatal sıçan beyninde valproik asit indüklü oksidatif stres üzerine etkileri

Year 2023, Volume: 7 Issue: 1, 76 - 81, 15.05.2023
https://doi.org/10.30616/ajb.1254803

Abstract

Timokinon (TQ), çörek otunun aktif maddesi, antioksidan ve nöroprotektif etkileri olan bir maddedir. Prenatal dönemde uygulandığında hipoglisemi etkisi bildirilmiştir. Bu çalışmanın amacı TK’nun perinatal sıçan beyninde Valproik Asit (VPA) indüklenmiş oksidatif streste kullanımı için maksimum antioksidan ve minimum yan etkiye sahip dozunun bulunmasıdır. Gebe Wistar sıçanlara 12,5. embriyonik günde (E12.5), i.p. 400mg/kg VPA enjeksiyonu uygulanmıştır. Tekrarlayan TK doz gruplarına (R) E11,5-E14,5 arası, Tek doz TK gruplarına (S) ise E12,5’de i.p. TK uygulanmıştır. RC: tekrarlayan kontrol, TQ yok; R1: 0.5 mg/kg/ml TK; R2: 2 mg/kg/ml TQ, R3: 4 mg/kg/ml TQ, R4: 8 mg/kg/ml TQ; SC- tek doz kontrol, TQ yok; S1: 8 mg/kg/ml TQ, S2: 15 mg/kg/ml TQ. Yavrular postnatal 7. günde sakrifiye edilerek total beyin dokularında ELISA yöntemiyle glutatyon (GSH), malondealdehit (MDA) ve süperoksit dismütaz (SOD) seviyeleri ölçülmüştür. Prenatal VPA uygulaması RC ve SC gruplarında naive gruba göre GSH ve SOD miktarlarını azaltmıştır. R3 grubunda kontrol grubuna göre artmış GSH ve SOD seviyeleri ölçülmüştür. Hiçbir grupta MDA seviyelerinde farklılık görülmemiştir. TK’nun VPA indüklü oksidatif stres üzerinde yan etki olmaksızın antioksidan etkisi R3 grubunda gösterilmiştir. Bu doz prenatal VPA asit maruziyetinin olumsuz olarak değiştirdiği davranış ve beyin morfolojisi gibi diğer parametrelerin incelenmesinde kullanılmak üzere önerilmektedir.

Supporting Institution

Bursa Uludağ Üniversitesi

Project Number

B.İ.Y.G.P-2018/1

References

  • AbuKhader MM, Khater SH, Al-Matubsi HY (2013). Acute Effects of Thymoquinone on the Pregnant Rat and Embryo-fetal Development. Drug and Chemical Toxicology 36(1): 27-34.
  • Adinolfi M (1985). The development of the human blood‐CSF‐brain barrier. Developmental Medicine & Child Neurology 27(4): 532-537.
  • Ahmad Z, Laughlin TF, Kady IO (2015). Thymoquinone ınhibits Escherichia coli ATP Synthase and cell growth. PloS one 10(5): e0127802.
  • Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A (2017). Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complementary and Alternative Medicine 17(1): 1-11.
  • Al-Enazi MM (2007). Effect of thymoquinone on malformations and oxidative stress-induced diabetic mice. Pakistan journal of biological sciences PJBS 10(18): 3115-3119.
  • Alonso-Aperte E, Ubeda N, Achon M (1999). Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation. Neurology 52(4): 750-756.
  • Attoub S, Sperandio O, Raza H (2013). Thymoquinone as an anticancer agent: Evidence from ınhibition of cancer cells viability and ınvasion ın vitro and tumor growth ın vivo. Fundamental & Clinical Pharmacology 27(5): 557-569.
  • Bambini-Junior V, Rodrigues L, Behr GA, Moreira JCF, Riesgo R, et al. (2011). Animal model of autism ınduced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain research 1408: 8-16.
  • Bambini-Junior V, Zanatta G, Nunes GDF, de Melo GM, Michels M, et al. (2014). Resveratrol prevents social deficits in animal model of autism ınduced by valproic acid. Neuroscience letters 583: 176-181.
  • Banerjee RV, Matthews RG (1990). Cobalamin-dependent methionine synthase. The FASEB journal 4(5): 1450-1459.
  • Burits M, Bucar F (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy research 14(5): 323-328.
  • Cabungcal JH, Preissmann D, Delseth C, Cuénod M, Do KQ, et al. (2007). Transitory glutathione deficit during brain development ınduces cognitive ımpairment in juvenile and adult rats: relevance to schizophrenia. Neurobiology of Disease 26(3): 634-645.
  • Chaudhary S, Parvez S (2012). An ın vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 225: 258-268.
  • Chehl N, Chipitsyna G, Gong Q (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone in pancreatic cancer cells. HPB 11(5): 373-381.
  • Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008). How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology 29 (1): 190-201.
  • Dringen R, Gutterer JM, Hirrlinger J (2000). Glutathione metabolism in brain: metabolic ınteraction between astrocytes and neurons in the defense against reactive oxygen species. European Journal of Biochemistry 267(16): 4912-4916.
  • Dufour-Rainfray D, Vourc’h P, Tourlet S (2011). Fetal exposure to teratogens: evidence of genes ınvolved in autism. Neuroscience & Biobehavioral Reviews 35(5): 1254-1265.
  • Eisses JF, Criscimanna A, Dionise ZR, Orabi AI, Javed TA, et al. (2015). Valproic acid limits pancreatic recovery after pancreatitis by ınhibiting histone deacetylases and preventing acinar redifferentiation programs. The American Journal of Pathology 185(12): 3304-3315.
  • El-Ameen NMH, Taha MME, Abdelwahab SI (2015). Anti-diabetic properties of thymoquinone is unassociated with glycogen phosphorylase ınhibition. Pharmacognosy Journal 7(6): 406-410.
  • El-Ansary A, Al-Ayadhi L (2014). GABAergic/glutamatergic ımbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation 11(1): 189.
  • Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR (2019). Nigella sativa and thymoquinone attenuate oxidative stress and cognitive ımpairment following cerebral hypoperfusion in rats. Metabolic Brain Disease 34(4): 1001-1010.
  • Fararh KM, Ibrahim AK, Elsonosy YA (2010). Thymoquinone enhances the activities of enzymes related to energy metabolism in peripheral leukocytes of diabetic rats. Research in Veterinary Science 88(3): 400-404.
  • Finkelstein JD (1998). The metabolism of homocysteine: Pathways and regulation. European Journal of Pediatrics 157(2): 40-44.
  • Gao J, Wu H, Cao Y (2016). Maternal DHA supplementation protects rat offspring against ımpairment of learning and memory following prenatal exposure to valproic acid. The Journal of Nutritional Biochemistry 35: 87-95.
  • Gianfrate L, Ferraris L (1998). Acute pancreatitis, hyperlipidemia, and diabetic ketoacidosis: who comes first?. American Journal of Gastroenterology 93 (8): 1393-1394.
  • Hawsawi ZA, Ali BA, Bamosa AO (2001). Effect of Nigella sativa (black seed) and thymoquinone on blood glucose in albino rats. Annals of Saudi Medicine 21(3-4): 242-244.
  • Hegazy HG, Ali EH, Elgoly AHM (2015). Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: Evidence of parallels between butyl paraben ıntoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 71(2): 173-180.
  • Hishida R, Nau H (1998). VPA-induced neural tube defects in mice, altered metabolism of sulfur amino acids and glutathione. Teratog Carcinog Mutagen 18(2): 49–61.
  • Ince S, Kucukkurt I, Demirel HH (2013). The role of thymoquinone as antioxidant protection on oxidative stress ınduced by ımidacloprid in male and female swiss albino mice. Toxicological & Environmental Chemistry 95(2): 318-329.
  • James SJ, Melnyk S, Jernigan S (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141(8): 947-95.
  • Kang J, Kim E (2015). Suppression of NMDA receptor function in mice prenatally exposed to valproic acid ımproves social deficits and repetitive behaviors. Frontiers in Molecular Neuroscience 8: 17.
  • Kanter M, Coskun O, Uysal H (2006). The Antioxidative and antihistaminic effect of nigella sativa and ıts major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Archives of toxicology 80(4): 217-224.
  • Kaur K, Chauhan V, Gu F, Chauhan A (2014). Bisphenol a induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings. Free Radical Biology and Medicine 76: 25-33.
  • Kim KC, Kim P, Go HS (2011). The critical period of valproate exposure to ınduce autistic symptoms in sprague–dawley rats. Toxicology Letter 201(2): 137-142.
  • McQuillen PS, Ferriero DM (2004). Selective vulnerability in the developing central nervous system. Pediatric Neurology 30(4): 227-235.
  • Mirza R, Sharma B (2019). Beneficial effects of pioglitazone, a selective peroxisome proliferator-activated receptor-γ agonist in prenatal valproic acid-induced behavioral and biochemical autistic like features in wistar rats. International Journal of Developmental Neuroscience 76: 6-16.
  • Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z (2020). S-adenosine methionine (same) and valproic acid (vpa) as epigenetic modulators: special emphasis on their ınteractions affecting nervous tissue during pregnancy. International Journal of Molecular Sciences 21(10): 3721.
  • Panfoli I, Candiano G, Malova M, De Angelis L, Cardiello V, et al. (2018). Oxidative stress as a primary risk factor for brain damage in preterm newborns. Frontiers in Pediatrics 6: 369.
  • Schmitz C, Rezaie P (2008). The neuropathology of autism: where do we stand?. Neuropathology and Applied Neurobiology 34(1): 4-11.
  • Schneider T, Przewłocki R (2005). Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30(1): 80.
  • Solati Z, Baharin BS, Bagheri H (2014). Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa l. seeds. Journal of the American Oil Chemists' Society 91(2): 295-300.
  • Tonkowicz P, Robertson M, Voogt J (1983). Secretion of rat placental lactogen by the fetal placenta and ıts ınhibitory effect on prolactin surges. Biology of Reproduction 28(3): 707-716.
  • Wegner C & Nau H (1992). Alteration of embryonic folate metabolism by valproic acid during organogenesis: ımplications for mechanism of teratogenesis. Neurology 42(4 Suppl 5): 17-24.
  • Won SJ, Yoo BH, Kauppinen TM, Choi BY, Kim JH, et al., (2012). Recurrent/moderate hypoglycemia ınduces hippocampal dendritic ınjury, microglial activation, and cognitive ımpairment in diabetic rats. Journal of Neuroinflammation 9(1): 1-12.

Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain

Year 2023, Volume: 7 Issue: 1, 76 - 81, 15.05.2023
https://doi.org/10.30616/ajb.1254803

Abstract

Thymoquinone (TQ), bioactive molecule of black cumin, has antioxidant and neuroprotective effects. TQ’s hypoglecemic effect while applied prenatally is reported. This study is aimed to find the TQ dose with maximum antioxidant and minimum side effects in valproic acid (VPA) induced oxidative stress. Pregnant Wistar rats were injected i.p. with 400 mg/kg/ml of VPA on embryonic day 12.5 (E12.5). Repeated dose groups were injected i.p. from E11.5- E14.5; RC- repeated control: did not receive TQ, R1: 0.5 mg/kg/ml of TQ, R2: 2 mg/kg/ml of TQ, R3: 4 mg/kg/ml of TQ, R4: 8 mg/kg/ml of TQ. Single dose groups were injected i.p. on E12.5; SC- single control: did not receive TQ, S1: 8 mg/kg/ml of TQ, S2: 15 mg/kg/ml of TQ. Pups were sacrificed on postnatal day 7. Glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured via ELISA method. Prenatal VPA exposure decreased GSH and SOD levels in RC and SC compared to naïve group. R3 group showed improved GSH and SOD levels compared to RC. No significant difference in MDA levels was found between groups. Antioxidant effects of TQ on VPA induced oxidative stress has been showed in R3 group. This dose can be used to investigate TQ’s effects on other parameters that are affected by prenatal VPA exposure.

Project Number

B.İ.Y.G.P-2018/1

References

  • AbuKhader MM, Khater SH, Al-Matubsi HY (2013). Acute Effects of Thymoquinone on the Pregnant Rat and Embryo-fetal Development. Drug and Chemical Toxicology 36(1): 27-34.
  • Adinolfi M (1985). The development of the human blood‐CSF‐brain barrier. Developmental Medicine & Child Neurology 27(4): 532-537.
  • Ahmad Z, Laughlin TF, Kady IO (2015). Thymoquinone ınhibits Escherichia coli ATP Synthase and cell growth. PloS one 10(5): e0127802.
  • Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A (2017). Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complementary and Alternative Medicine 17(1): 1-11.
  • Al-Enazi MM (2007). Effect of thymoquinone on malformations and oxidative stress-induced diabetic mice. Pakistan journal of biological sciences PJBS 10(18): 3115-3119.
  • Alonso-Aperte E, Ubeda N, Achon M (1999). Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation. Neurology 52(4): 750-756.
  • Attoub S, Sperandio O, Raza H (2013). Thymoquinone as an anticancer agent: Evidence from ınhibition of cancer cells viability and ınvasion ın vitro and tumor growth ın vivo. Fundamental & Clinical Pharmacology 27(5): 557-569.
  • Bambini-Junior V, Rodrigues L, Behr GA, Moreira JCF, Riesgo R, et al. (2011). Animal model of autism ınduced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain research 1408: 8-16.
  • Bambini-Junior V, Zanatta G, Nunes GDF, de Melo GM, Michels M, et al. (2014). Resveratrol prevents social deficits in animal model of autism ınduced by valproic acid. Neuroscience letters 583: 176-181.
  • Banerjee RV, Matthews RG (1990). Cobalamin-dependent methionine synthase. The FASEB journal 4(5): 1450-1459.
  • Burits M, Bucar F (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy research 14(5): 323-328.
  • Cabungcal JH, Preissmann D, Delseth C, Cuénod M, Do KQ, et al. (2007). Transitory glutathione deficit during brain development ınduces cognitive ımpairment in juvenile and adult rats: relevance to schizophrenia. Neurobiology of Disease 26(3): 634-645.
  • Chaudhary S, Parvez S (2012). An ın vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 225: 258-268.
  • Chehl N, Chipitsyna G, Gong Q (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone in pancreatic cancer cells. HPB 11(5): 373-381.
  • Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008). How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology 29 (1): 190-201.
  • Dringen R, Gutterer JM, Hirrlinger J (2000). Glutathione metabolism in brain: metabolic ınteraction between astrocytes and neurons in the defense against reactive oxygen species. European Journal of Biochemistry 267(16): 4912-4916.
  • Dufour-Rainfray D, Vourc’h P, Tourlet S (2011). Fetal exposure to teratogens: evidence of genes ınvolved in autism. Neuroscience & Biobehavioral Reviews 35(5): 1254-1265.
  • Eisses JF, Criscimanna A, Dionise ZR, Orabi AI, Javed TA, et al. (2015). Valproic acid limits pancreatic recovery after pancreatitis by ınhibiting histone deacetylases and preventing acinar redifferentiation programs. The American Journal of Pathology 185(12): 3304-3315.
  • El-Ameen NMH, Taha MME, Abdelwahab SI (2015). Anti-diabetic properties of thymoquinone is unassociated with glycogen phosphorylase ınhibition. Pharmacognosy Journal 7(6): 406-410.
  • El-Ansary A, Al-Ayadhi L (2014). GABAergic/glutamatergic ımbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation 11(1): 189.
  • Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR (2019). Nigella sativa and thymoquinone attenuate oxidative stress and cognitive ımpairment following cerebral hypoperfusion in rats. Metabolic Brain Disease 34(4): 1001-1010.
  • Fararh KM, Ibrahim AK, Elsonosy YA (2010). Thymoquinone enhances the activities of enzymes related to energy metabolism in peripheral leukocytes of diabetic rats. Research in Veterinary Science 88(3): 400-404.
  • Finkelstein JD (1998). The metabolism of homocysteine: Pathways and regulation. European Journal of Pediatrics 157(2): 40-44.
  • Gao J, Wu H, Cao Y (2016). Maternal DHA supplementation protects rat offspring against ımpairment of learning and memory following prenatal exposure to valproic acid. The Journal of Nutritional Biochemistry 35: 87-95.
  • Gianfrate L, Ferraris L (1998). Acute pancreatitis, hyperlipidemia, and diabetic ketoacidosis: who comes first?. American Journal of Gastroenterology 93 (8): 1393-1394.
  • Hawsawi ZA, Ali BA, Bamosa AO (2001). Effect of Nigella sativa (black seed) and thymoquinone on blood glucose in albino rats. Annals of Saudi Medicine 21(3-4): 242-244.
  • Hegazy HG, Ali EH, Elgoly AHM (2015). Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: Evidence of parallels between butyl paraben ıntoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 71(2): 173-180.
  • Hishida R, Nau H (1998). VPA-induced neural tube defects in mice, altered metabolism of sulfur amino acids and glutathione. Teratog Carcinog Mutagen 18(2): 49–61.
  • Ince S, Kucukkurt I, Demirel HH (2013). The role of thymoquinone as antioxidant protection on oxidative stress ınduced by ımidacloprid in male and female swiss albino mice. Toxicological & Environmental Chemistry 95(2): 318-329.
  • James SJ, Melnyk S, Jernigan S (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141(8): 947-95.
  • Kang J, Kim E (2015). Suppression of NMDA receptor function in mice prenatally exposed to valproic acid ımproves social deficits and repetitive behaviors. Frontiers in Molecular Neuroscience 8: 17.
  • Kanter M, Coskun O, Uysal H (2006). The Antioxidative and antihistaminic effect of nigella sativa and ıts major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Archives of toxicology 80(4): 217-224.
  • Kaur K, Chauhan V, Gu F, Chauhan A (2014). Bisphenol a induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings. Free Radical Biology and Medicine 76: 25-33.
  • Kim KC, Kim P, Go HS (2011). The critical period of valproate exposure to ınduce autistic symptoms in sprague–dawley rats. Toxicology Letter 201(2): 137-142.
  • McQuillen PS, Ferriero DM (2004). Selective vulnerability in the developing central nervous system. Pediatric Neurology 30(4): 227-235.
  • Mirza R, Sharma B (2019). Beneficial effects of pioglitazone, a selective peroxisome proliferator-activated receptor-γ agonist in prenatal valproic acid-induced behavioral and biochemical autistic like features in wistar rats. International Journal of Developmental Neuroscience 76: 6-16.
  • Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z (2020). S-adenosine methionine (same) and valproic acid (vpa) as epigenetic modulators: special emphasis on their ınteractions affecting nervous tissue during pregnancy. International Journal of Molecular Sciences 21(10): 3721.
  • Panfoli I, Candiano G, Malova M, De Angelis L, Cardiello V, et al. (2018). Oxidative stress as a primary risk factor for brain damage in preterm newborns. Frontiers in Pediatrics 6: 369.
  • Schmitz C, Rezaie P (2008). The neuropathology of autism: where do we stand?. Neuropathology and Applied Neurobiology 34(1): 4-11.
  • Schneider T, Przewłocki R (2005). Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30(1): 80.
  • Solati Z, Baharin BS, Bagheri H (2014). Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa l. seeds. Journal of the American Oil Chemists' Society 91(2): 295-300.
  • Tonkowicz P, Robertson M, Voogt J (1983). Secretion of rat placental lactogen by the fetal placenta and ıts ınhibitory effect on prolactin surges. Biology of Reproduction 28(3): 707-716.
  • Wegner C & Nau H (1992). Alteration of embryonic folate metabolism by valproic acid during organogenesis: ımplications for mechanism of teratogenesis. Neurology 42(4 Suppl 5): 17-24.
  • Won SJ, Yoo BH, Kauppinen TM, Choi BY, Kim JH, et al., (2012). Recurrent/moderate hypoglycemia ınduces hippocampal dendritic ınjury, microglial activation, and cognitive ımpairment in diabetic rats. Journal of Neuroinflammation 9(1): 1-12.
There are 44 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Süeda Tunçak 0000-0002-5723-0769

Büşra Esmerce 0000-0002-3405-3640

Birnur Aydin 0000-0002-8193-474X

Bülent Gören 0000-0001-8061-8756

Project Number B.İ.Y.G.P-2018/1
Early Pub Date May 14, 2023
Publication Date May 15, 2023
Acceptance Date April 7, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Tunçak, S., Esmerce, B., Aydin, B., Gören, B. (2023). Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain. Anatolian Journal of Botany, 7(1), 76-81. https://doi.org/10.30616/ajb.1254803
AMA Tunçak S, Esmerce B, Aydin B, Gören B. Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain. Ant J Bot. May 2023;7(1):76-81. doi:10.30616/ajb.1254803
Chicago Tunçak, Süeda, Büşra Esmerce, Birnur Aydin, and Bülent Gören. “Effects of Thymoquinone on Valproic Acid-Induced Oxidative Stress in Perinatal Rat Brain”. Anatolian Journal of Botany 7, no. 1 (May 2023): 76-81. https://doi.org/10.30616/ajb.1254803.
EndNote Tunçak S, Esmerce B, Aydin B, Gören B (May 1, 2023) Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain. Anatolian Journal of Botany 7 1 76–81.
IEEE S. Tunçak, B. Esmerce, B. Aydin, and B. Gören, “Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain”, Ant J Bot, vol. 7, no. 1, pp. 76–81, 2023, doi: 10.30616/ajb.1254803.
ISNAD Tunçak, Süeda et al. “Effects of Thymoquinone on Valproic Acid-Induced Oxidative Stress in Perinatal Rat Brain”. Anatolian Journal of Botany 7/1 (May 2023), 76-81. https://doi.org/10.30616/ajb.1254803.
JAMA Tunçak S, Esmerce B, Aydin B, Gören B. Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain. Ant J Bot. 2023;7:76–81.
MLA Tunçak, Süeda et al. “Effects of Thymoquinone on Valproic Acid-Induced Oxidative Stress in Perinatal Rat Brain”. Anatolian Journal of Botany, vol. 7, no. 1, 2023, pp. 76-81, doi:10.30616/ajb.1254803.
Vancouver Tunçak S, Esmerce B, Aydin B, Gören B. Effects of thymoquinone on valproic acid-induced oxidative stress in perinatal rat brain. Ant J Bot. 2023;7(1):76-81.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.