Research Article
BibTex RIS Cite

Phytophthora capsici’ye maruz bırakılan biber fidelerinin köklerinde nitrat içeriği

Year 2023, Volume: 7 Issue: 2, 122 - 127, 15.11.2023
https://doi.org/10.30616/ajb.1287442

Abstract

Phytophthora capsici ölümcül bir bitki hastalığı olan kök çürüklüğüne neden olur. Hastalıklara karşı direnç, birçok savunma maddesinin aktivasyonu ile üretilir, dolayısıyla bu doğal savunma mekanizmasının bilinmesi, hastalık kontrolü için yeni stratejilerin geliştirilmesine olanak tanımaktadır. Bu çalışmada, bitki büyüme ve gelişmesinde etkili olan nitratın (NO3-) patojen enfeksiyonuna maruz kalan farklı biber genotiplerindeki tepkisi araştırılmıştır. Bunun için dirençli ve duyarlı biber genotipleri 102, 103 ve 104 zoospore/mL P. capsici-22 izolatına maruz bırakılmış ve enfeksiyondan sonraki 2., 4. ve 6. günlerde alınan kök örneklerinden NO3- içeriğindeki değişimler belirlenmiştir. Tüm zoospor konsantrasyonları, tüm günlerde CM-334'ün köklerindeki NO3- içeriğinde genel olarak bir artışa neden olmuştur. KM-181 ve SD-8 genotiplerinde en yüksek NO3- içeriği 103 zoospor/mL uygulamasının 6. gününde belirlenmiştir. SD-8 ve KM-181 genotiplerinde, 104 zoospor/mL uygulamasının 4. ve 6. günlerinde NO3- miktarında önemli bir azalma saptanmıştır. Bu genotiplerde, yüksek zoospor konsantrasyonunda enfeksiyon süresinin artışı ile birlikte NO3- miktarında azalma bulunmuştur. Üç biber genotipi karşılaştırıldığında, en yüksek NO3- içeriği, enfeksiyondan sonraki 6. günde 104 zoospor/mL'ye maruz bırakılan dirençli CM-334 genotipinde belirlenmiştir. Bu çalışmada, dirençli ve duyarlı biber genotiplerinde NO3- miktarındaki değişimler, NO3- 'ün P. capsici-22 'ye karşı bitki savunmasında etkili olabileceğini işaret etmektedir.

References

  • Blaker NS, Macdonald JD (1981). Predisposing effects oil moisture extremes on the susceptibility of Rhododendron to Phytophthora root and crown rot. Phytopathology 71: 831-834.
  • Bolton MD,Thomma BP (2008). The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenicfungi. Physiological and Molecular Plant Pathology 72: 104-110.
  • Cataldo DA, Haroon M, Schrader LE, Youngs V (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6: 71-80.
  • Cowley T, Walters DR (2002). Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f.sp. hordei. Plant Cell Environment 25: 461-468.
  • Fagard M, Launay A, Clément G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulié MC, Masclaux-Daubresse C (2014). Nitrogen metabolism meets phytopathology. Journal of Experimental Botany 65: 5643-5656.
  • Farjad M, Clément G, Launay A, Jeridi R, Jolivet S, Citerne S, Rigault M, Soulie MC, Dinant S, Fagard M (2021). Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis. Molecular Plant Pathology 22: 1332-1346.
  • Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST (2013). The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany 64: 553-568.
  • Hachler H, Hohl HR (1984). Temporal and spartial distrubition patterns of collar and papillae wall appositions in resistant and susceptible tuber tissue of Solanum tuberrosum infected by Phytophthora infestans. Physiological Plant Pathology 24: 107-114.
  • Jones DR, Unwin CH, Ward EWB (1975).Capsidiol induction in pepper fruit during interactions with Phytophthora capsici and Monilinia fructicola. Phytopathology 65: 1417-1419.
  • Karahan O, Maden S (1974). Orta Anadolu Bölgesinde Karaağaç (Ulmus spp.) ve kavak (Populus spp.) ' larda görülen kurumalar ve buna sebep olan etmenler. Bitki Koruma Bülteni 19(4): 175-180.
  • Koç E, Üstün AS (2009). Pathogenesis related proteins in stem and leaf tissues of peppers Capsicum annuuum L. infected by the root fungus Phytophthora capsici Leon. Advances in Food Sciences 31(3): 146-150.
  • Koç E, Üstün AS, İşlek C, Arıcı YK (2011). Defence responses in leaves of resistant and susceptible pepper (Capsicum annuum L.) cultivars infected with different inoculum concentrations of Phytophthora capsici Leon. Scientia Horticulturae 128(4): 434-442.
  • Koç E (2015). Exogenous application of spermidine enhanced tolerance of pepper against Phytophthora capsici stress. Plant Protection Science 51(3): 127-135.
  • Koç E (2022). Physiological responses of resistant and susceptible pepper plants to exogenous proline application under Phytophthora capsici stress. Acta Botanica Croatica 81(1): 89-100.
  • Koç E, Üstün AS (2012). Influence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turkish Journal of Biology 36(3): 357-371.
  • Krasnow CS, Hausbeck MK (2015). Pathogenicity of Phytophthora capsici to Brassica vegetable crops and biofumigation cover crops (Brassica spp.). Plant disease 99(12): 1721-1726.
  • Leonian LH (1922). Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12: 401-408.
  • Moschou PN, Sarrıs PF, Skandalıs N, Andrıopoulou AH, Paschalıdıs KA, Panopoulos NJ (2009). Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiology 149: 1970-1981.
  • Mur LA, Simpson C, Kumari A, Gupta AK, Gupta KJ (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany 119(5): 703-709.
  • Naegele RP, Hausbeck MK (2014). Evaluation of pepper fruit for resistance to Phytophthora capsici in a recombinant inbred line population, and the correlation with fruit shape. Plant Disease 98(7): 885-890.
  • Ruiz JM, Rivero RM, Garcia PC, Baghour M, Romerao L (1999). Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants (Nicotiana tabacum L.). Plant Science 141: 107-115.
  • Sagor GHM, Cong RZ, Berberich T, Takahashi H, Takahashi Y, Kusano T (2009). Spermine signaling in defense reaction against avirulent viral pathogen in Arabidopsis thaliana. Plant Signaling and Behavior 4(4): 316-318.
  • Satour MM, Butler EE (1967). A root and crown rot of tomato casused Phytophthora capsici and Phytophthora parasitica. Phytopathology 57: 510-515.
  • Soulie MC, Koka SM, Floch K, Vancostenoble B, Barbe D, Daviere A, Soubigou-Taconnat L, Brunaud V, Poussereau N, Loise E, Devallee A, Expert D, Fagard M (2020). Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Molecular Plant Pathology 21: 1436-1450.
  • Tiburcio AF, Altabella T, Bitrian M, Alcazar R (2014). The roles of polyamines during the lifespan of plants: from development to stress. Planta 240: 1-18.
  • Wang M, Sun Y, Gu Z, Wang R, Sun G, Zhu C, Guo S, Shen Q (2016). Nitrate protects cucumber plants against Fusarium oxysporum by regulating citrate exudation. Plant and Cell Physiology 57(9): 2001-2012.
  • Wendehenne D, Gao QM, Kachroo A, Kachroo P (2014). Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology 20: 127-134.
  • Ward EWB, Stoessl A (1974). Isolataion of the phyoalexin capsidiol from pepper leaves and stems. Proceedings of 66th Annual Meeting of the American Phytopathological Society, Vancouver. Pp. 11-15.
  • Van Steekelenburg NAM (1980). Phytophthora root rot of sweet pepper. Netherlands Journal of Plant Pathology 86: 259-264.
  • Yoda H, Yamaguchı Y, Sano H (2003). Induction of hypersensitive cell death by hydrogen peroxide through polyamine degradation in tobacco plants. Plant Physiology 132: 1973-1981.
  • Zhou J,Wang M, SunY, Gu Z, Wang R, Saydin A, Shen Q, Guo S (2017). Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution. Toxins 9(3): 100.

Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici

Year 2023, Volume: 7 Issue: 2, 122 - 127, 15.11.2023
https://doi.org/10.30616/ajb.1287442

Abstract

Phytophthora capsici causes root rot, a deadly plant disease. Resistance to diseases is produced by the activation of many defense substances, so knowledge of this natural defense mechanism allows the development of new strategies for disease control. In this study, the response of nitrate (NO3-), which is effective in plant growth and development, in different pepper genotypes exposed to pathogen infection was investigated. For this, resistant and sensitive pepper genotypes were exposed to 102, 103, and 104 zoospore/mL of P. capsici-22 strain and changes in NO3- content were determined from root samples taken on the 2nd, 4th and 6th days after infection. All zoospore concentrations resulted in an overall increase in NO3- content in roots of CM-334 on all days. In KM-181 and SD-8 genotypes, the highest NO3- content was determined on the 6th day of 103 zoospore/mL application. In SD-8 and KM-181 genotypes, a significant decrease in the amount of NO3- was determined on the 4th and 6th days of treatment of 104 zoospore/mL. In these genotypes, a decrease in the amount of NO3- was found with the increase in infection time at high zoospore concentration. When the three pepper genotypes were compared, the highest NO3- content was determined in the resistant CM-334 genotype, which was exposed to 104 zoospore/mL on the 6th day following the infection. In this study, changes in the amount of NO3- in resistant and susceptible pepper genotypes indicated that NO3- may be effective in plant defense against P. capsici-22.

References

  • Blaker NS, Macdonald JD (1981). Predisposing effects oil moisture extremes on the susceptibility of Rhododendron to Phytophthora root and crown rot. Phytopathology 71: 831-834.
  • Bolton MD,Thomma BP (2008). The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenicfungi. Physiological and Molecular Plant Pathology 72: 104-110.
  • Cataldo DA, Haroon M, Schrader LE, Youngs V (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6: 71-80.
  • Cowley T, Walters DR (2002). Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f.sp. hordei. Plant Cell Environment 25: 461-468.
  • Fagard M, Launay A, Clément G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulié MC, Masclaux-Daubresse C (2014). Nitrogen metabolism meets phytopathology. Journal of Experimental Botany 65: 5643-5656.
  • Farjad M, Clément G, Launay A, Jeridi R, Jolivet S, Citerne S, Rigault M, Soulie MC, Dinant S, Fagard M (2021). Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis. Molecular Plant Pathology 22: 1332-1346.
  • Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST (2013). The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany 64: 553-568.
  • Hachler H, Hohl HR (1984). Temporal and spartial distrubition patterns of collar and papillae wall appositions in resistant and susceptible tuber tissue of Solanum tuberrosum infected by Phytophthora infestans. Physiological Plant Pathology 24: 107-114.
  • Jones DR, Unwin CH, Ward EWB (1975).Capsidiol induction in pepper fruit during interactions with Phytophthora capsici and Monilinia fructicola. Phytopathology 65: 1417-1419.
  • Karahan O, Maden S (1974). Orta Anadolu Bölgesinde Karaağaç (Ulmus spp.) ve kavak (Populus spp.) ' larda görülen kurumalar ve buna sebep olan etmenler. Bitki Koruma Bülteni 19(4): 175-180.
  • Koç E, Üstün AS (2009). Pathogenesis related proteins in stem and leaf tissues of peppers Capsicum annuuum L. infected by the root fungus Phytophthora capsici Leon. Advances in Food Sciences 31(3): 146-150.
  • Koç E, Üstün AS, İşlek C, Arıcı YK (2011). Defence responses in leaves of resistant and susceptible pepper (Capsicum annuum L.) cultivars infected with different inoculum concentrations of Phytophthora capsici Leon. Scientia Horticulturae 128(4): 434-442.
  • Koç E (2015). Exogenous application of spermidine enhanced tolerance of pepper against Phytophthora capsici stress. Plant Protection Science 51(3): 127-135.
  • Koç E (2022). Physiological responses of resistant and susceptible pepper plants to exogenous proline application under Phytophthora capsici stress. Acta Botanica Croatica 81(1): 89-100.
  • Koç E, Üstün AS (2012). Influence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turkish Journal of Biology 36(3): 357-371.
  • Krasnow CS, Hausbeck MK (2015). Pathogenicity of Phytophthora capsici to Brassica vegetable crops and biofumigation cover crops (Brassica spp.). Plant disease 99(12): 1721-1726.
  • Leonian LH (1922). Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12: 401-408.
  • Moschou PN, Sarrıs PF, Skandalıs N, Andrıopoulou AH, Paschalıdıs KA, Panopoulos NJ (2009). Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiology 149: 1970-1981.
  • Mur LA, Simpson C, Kumari A, Gupta AK, Gupta KJ (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany 119(5): 703-709.
  • Naegele RP, Hausbeck MK (2014). Evaluation of pepper fruit for resistance to Phytophthora capsici in a recombinant inbred line population, and the correlation with fruit shape. Plant Disease 98(7): 885-890.
  • Ruiz JM, Rivero RM, Garcia PC, Baghour M, Romerao L (1999). Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants (Nicotiana tabacum L.). Plant Science 141: 107-115.
  • Sagor GHM, Cong RZ, Berberich T, Takahashi H, Takahashi Y, Kusano T (2009). Spermine signaling in defense reaction against avirulent viral pathogen in Arabidopsis thaliana. Plant Signaling and Behavior 4(4): 316-318.
  • Satour MM, Butler EE (1967). A root and crown rot of tomato casused Phytophthora capsici and Phytophthora parasitica. Phytopathology 57: 510-515.
  • Soulie MC, Koka SM, Floch K, Vancostenoble B, Barbe D, Daviere A, Soubigou-Taconnat L, Brunaud V, Poussereau N, Loise E, Devallee A, Expert D, Fagard M (2020). Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Molecular Plant Pathology 21: 1436-1450.
  • Tiburcio AF, Altabella T, Bitrian M, Alcazar R (2014). The roles of polyamines during the lifespan of plants: from development to stress. Planta 240: 1-18.
  • Wang M, Sun Y, Gu Z, Wang R, Sun G, Zhu C, Guo S, Shen Q (2016). Nitrate protects cucumber plants against Fusarium oxysporum by regulating citrate exudation. Plant and Cell Physiology 57(9): 2001-2012.
  • Wendehenne D, Gao QM, Kachroo A, Kachroo P (2014). Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology 20: 127-134.
  • Ward EWB, Stoessl A (1974). Isolataion of the phyoalexin capsidiol from pepper leaves and stems. Proceedings of 66th Annual Meeting of the American Phytopathological Society, Vancouver. Pp. 11-15.
  • Van Steekelenburg NAM (1980). Phytophthora root rot of sweet pepper. Netherlands Journal of Plant Pathology 86: 259-264.
  • Yoda H, Yamaguchı Y, Sano H (2003). Induction of hypersensitive cell death by hydrogen peroxide through polyamine degradation in tobacco plants. Plant Physiology 132: 1973-1981.
  • Zhou J,Wang M, SunY, Gu Z, Wang R, Saydin A, Shen Q, Guo S (2017). Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution. Toxins 9(3): 100.
There are 31 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Esra Koç 0000-0003-1531-1744

Belgizar Karayiğit 0000-0001-5618-373X

Early Pub Date July 4, 2023
Publication Date November 15, 2023
Acceptance Date May 24, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Koç, E., & Karayiğit, B. (2023). Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici. Anatolian Journal of Botany, 7(2), 122-127. https://doi.org/10.30616/ajb.1287442
AMA Koç E, Karayiğit B. Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici. Ant J Bot. November 2023;7(2):122-127. doi:10.30616/ajb.1287442
Chicago Koç, Esra, and Belgizar Karayiğit. “Nitrate Content in Roots of Pepper Seedlings Exposed to Phytophthora Capsici”. Anatolian Journal of Botany 7, no. 2 (November 2023): 122-27. https://doi.org/10.30616/ajb.1287442.
EndNote Koç E, Karayiğit B (November 1, 2023) Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici. Anatolian Journal of Botany 7 2 122–127.
IEEE E. Koç and B. Karayiğit, “Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici”, Ant J Bot, vol. 7, no. 2, pp. 122–127, 2023, doi: 10.30616/ajb.1287442.
ISNAD Koç, Esra - Karayiğit, Belgizar. “Nitrate Content in Roots of Pepper Seedlings Exposed to Phytophthora Capsici”. Anatolian Journal of Botany 7/2 (November 2023), 122-127. https://doi.org/10.30616/ajb.1287442.
JAMA Koç E, Karayiğit B. Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici. Ant J Bot. 2023;7:122–127.
MLA Koç, Esra and Belgizar Karayiğit. “Nitrate Content in Roots of Pepper Seedlings Exposed to Phytophthora Capsici”. Anatolian Journal of Botany, vol. 7, no. 2, 2023, pp. 122-7, doi:10.30616/ajb.1287442.
Vancouver Koç E, Karayiğit B. Nitrate content in roots of pepper seedlings exposed to Phytophthora capsici. Ant J Bot. 2023;7(2):122-7.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.