Research Article
BibTex RIS Cite

Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies

Year 2025, Volume: 9 Issue: 2, 114 - 126
https://doi.org/10.30616/ajb.1654542

Abstract

Rheum ribes is a medicinal plant with antioxidant, antibacterial effects, which have been demonstrated in various studies. In this study, the biological activities (antioxidant and antimicrobial) and phytochemical contents (total phenolic content and phenolic substances content by LC-ESI-MS/MS) of the fruit and peel extracts obtained from R. ribes were determined. The antioxidant content (DPPH˙ and FRAP) and total phenolic content (FCR) of R. ribes were analyzed for the first time using a new potentiometric biosensor method. In addition, the characteristic properties (XRD, FT-IR, FE-SEM, FESEM-EDX, TEM, and UV-Vis) and antibacterial properties of silver nanoparticles (AgNPs) prepared by an environmentally friendly green synthesis method were investigated. In addition, the interactions of the main component (hesperidin) in the LC-ESI-MS/MS content analyses with the topoisomerase IV were calculated theoretically. While the antioxidant activity of the R. ribes peel extract was comparable to that of the fruit extract, it was higher for FRAP and DPPH˙ scavenging activity. R. ribes (fruit)-AgNPs were found to have high activity against the microorganisms. The MolDock scores of hesperidin and possible hesperidin-AgNP were calculated to be -111.83 and -171.08, respectively. Thus, hesperidin-AgNP complex was found to have higher inhibitory properties than hesperidin. In the 100-ns MD simulation, the RMSD values were constant at 10 nm and the MM/PBSA calculation resulted in a binding energy of -16.15 kcal/mol for hesperidin.

Thanks

The authors would like to thank TUBA (Turkish Academy of Sciences).

References

  • Abdulla KK, Taha EM, Rahim SM (2014). Phenolic profile, antioxidant, and antibacterial effects of ethanol and aqueous extracts of Rheum ribes L. roots. Der Pharmacia Lettre 7(4): 26-30.
  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19-25. https://doi.org/https://doi.org/10.1016/j.softx.2015.06.001
  • Abu-Irmaileh BE, Afifi FU (2003). Herbal medicine in Jordan with special emphasis on commonly used herbs. Journal of Ethnopharmacology 89(2-3): 193-197.
  • Ahmad N, Bhatnagar S, Ali SS, Dutta R (2015). Phytofabrication of bioinduced silver nanoparticles for biomedical applications. International journal of nanomedicine 2015 10: 7019-7030. https://doi.org/https://doi.org/10.2147/IJN.S94479
  • Ajitha B, Reddy YAK, Reddy PS (2014). Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121: 164-172.
  • Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T (2023). Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. Journal of Biomolecular Structure and Dynamics 41(14): 6695-6708. https://doi.org/https://doi.org/10.1080/07391102.2022.2111360
  • Aktepe N, Baran A (2022). Green synthesis and antimicrobial effects of silver nanoparticles by pumpkin cucurbita maxima fruit fiber. Medicine Science 11: 794-799.
  • Amin HDM, Lazim ZS, Nashi TA (2023). Phytochemical screening of Rheum ribes Root, Leaves and Flowering Stem and Biological Activity of the Root. Fifth International Conference for Agricultural and Environment Sciences, 1158 (2023): 042068, pp. 1-14.
  • Asghar MA, Yousuf RI, Shoaib MH, Asghar MA (2020). Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. International Journal of Biological Macromolecules 160: 934-943.
  • Atarod M, Nasrollahzadeh M, Sajadi SM (2015). Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B [10.1039/C5RA17269A]. RSC Advances 5(111): 91532-91543. https://doi.org/10.1039/C5RA17269A
  • Auda MM, Shareef HA, Mohammed BL (2021). Green synthesis of Silver Nanoparticles using the extract of Rheum ribes and evaluating their antifungal activity against some of Candida sp. Tikrit Journal of Pure Science 26(2): 53-59.
  • Aygün A, Gülbağça F, Nas MS, Alma MH, Çalımlı MH, Ustaoglu B, Altunoglu YC, Baloğlu MC, Cellat K, Şen F (2020). Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. Journal of Pharmaceutical and Biomedical Analysis 179: 113012.
  • Balavijayalakshmi J, Ramalakshmi V (2017). Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of applied research and technology 15(5): 413-422. https://doi.org/https://doi.org/10.1016/j.jart.2017.03.010
  • Basavegowda N, Idhayadhulla A, Lee YR (2014). Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Materials Science and Engineering: C 43: 58-64.
  • Başar Y, Demirtaş İ, Yenigün S, İpek Y, Özen T, Behçet L (2024c). Molecular docking, molecular dynamics, MM/PBSA approaches and bioactivity studies of nepetanudoside B isolated from endemic Nepeta aristata. Journal of Biomolecular Structure and Dynamics PMID: 38288959. https://doi.org/https://doi.org/10.1080/07391102.2024.2309641
  • Başar Y, Hosaflıoğlu İ, Erenler R (2024b). Phytochemical analysis of Robinia pseudoacacia flowers and leaf: quantitative analysis of natural compounds and molecular docking application. Turkish Journal of Biodiversity 7(1): 1-10. https://doi.org/10.38059/biodiversity.1446241
  • Başar Y, Yiğit A, Karacalı Tunç A, Sarıtaş BM (2024a). Lavandula stoechas extract; synthesis of silver nanoparticles (nature-friendly green synthesis method), characterization, antimicrobial activity and in silico molecular docking study. Current Perspectives on Medicinal and Aromatic Plants 7(1): 24-33. https://doi.org/10.38093/cupmap.1461976
  • Bindhani B, Panigrahi A (2015). Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum sanctum L (Tulsi) and study of its antibacterial activities. Journal of Nanomedicine & Nanotechnology S6: 008. doi:10.4172/2157-7439.S6-008
  • Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010). Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of chemical theory and computation 6(2): 459-466. https://doi.org/https://doi.org/10.1021/ct900549r
  • Chi GF, Khan S, Başar Y, Kuete JRN, Matieta VY, Kuete JBT, Megaptche JF, Chongong MA, Yenigün S, Ayimele GA, Mbaveng AT, Kuete V, Shaheen F (2025). Antibacterial flavonoids from Tetrapleura tetraptera (Fabaceae) fruit pulp, in silico studies. South African Journal of Botany 180: 96-106. https://doi.org/https://doi.org/10.1016/j.sajb.2025.02.026
  • Cullen J (1967). Rheum L. In: Davis PH (ed.) In Flora of Turkey and the East Aegean Islands, Vol. 2, ,). UK: Edinburgh University Press. pp. 268–269.
  • Dananjaya S, Kumar RS, Yang M, Nikapitiya C, Lee J, De Zoysa M (2018). Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. International Journal of Biological Macromolecules 108: 1281-1288.
  • Gautam V, Nimmanpipug P, Zain SM, Rahman NA, Lee VS (2021). Molecular dynamics simulations in designing DARPins as phosphorylation-specific protein binders of ERK2. Molecules 26(15): 4540. https://doi.org/https://doi.org/10.3390/molecules26154540
  • Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports 9(1): 13071. https://doi.org/10.1038/s41598-019-49444-y
  • He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, Zhang K, Zhao F (2013). Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int J Nanomedicine 8: 1809-1815.
  • Hlapisi N, Songca S, Ajibade P (2024). Morphological and structural properties of silver/chlorargyrite nanoparticles prepared using Senecio madagascariensis leaf extract and interaction studies with bovine serum albumin. MRS Advances 9: 830-836. https://doi.org/10.1557/s43580-024-00826-z
  • Işıldak Ö, Yıldız I, Genc N (2022). A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chemistry 373(Pt A): 131420. https://doi.org/10.1016/j.foodchem.2021.131420
  • Işıldak Ö, Yıldız I, Genç N, Sabanci D, Işıldak İ (2023). New potentiometric PVC membrane electrode for ferric reduction antioxidant power assay. Food Chemistry 423: 136261. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.136261
  • Işıldak Ö, Yıldız İ (2024). New potentiometric sensor for total phenolic assay of plant extracts. Bulletin of the Chemical Society of Japan 97(5): uoae043. https://doi.org/10.1093/bulcsj/uoae043
  • Jana J, Ganguly M, Pal T (2016). Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances 6(89): 86174-86211. https://doi.org/10.1039/C6RA14173K
  • Jayarambabu N, Akshaykranth A, Rao TV, Rao KV, Kumar RR (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters 259: 126813. https://doi.org/https://doi.org/10.1016/j.matlet.2019.126813
  • Kampranis SC, Maxwell A (1996). Conversion of DNA gyrase into a conventional type II topoisomerase. Proceedings of the National Academy of Sciences 93(25): 14416-14421.
  • Kashiwada Y, Nonaka G-I, Nishioka I, Yamagishi T (1988). Galloyl and hydroxycinnamoylglucoses from rhubarb. Phytochemistry 27(5): 1473-1477.
  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG (2018). Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy 10: 9-15. https://doi.org/https://doi.org/10.1016/j.scp.2018.08.001
  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: nanotechnology, biology and medicine 3(1): 95-101. https://doi.org/https://doi.org/10.1016/j.nano.2006.12.001
  • Lateef A, Ojo SA, Elegbede JA (2016). The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnology Reviews 5(6): 601-622. https://doi.org/https://doi.org/10.1515/ntrev-2016-0049
  • Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery 13(1): 23-37. https://doi.org/https://doi.org/10.1080/17460441.2018.1403419
  • Majewski M, Ruiz-Carmona S, Barril X (2019). An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry 2(1): 110. https://doi.org/https://doi.org/10.1038/s42004-019-0205-5
  • Naeimi Z, Neamati A, Homayouni-Tabrizi M (2019). Evaluation of antioxidant, anti-cancer and anti-inflammatory characteristics of bio-synthesized silver nanoparticles produced by waste extract of Rheum ribes L. Feyz Medical Sciences Journal 23(3): 241-252.
  • Nandana CN, Christeena M, Bharathi D (2021). Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. Journal of Cluster Science 33: 269-279. DOI: 10.1007/s10876-020-01947-9
  • Öztürk D, Özgüven A, Yonten V, Ertaş M (2022). Green synthesis, characterization and antimicrobial activity of silver nanoparticles using Ornithogalum narbonense L. Inorganic and Nano-Metal Chemistry 52(3): 329-341. DOI: 10.1080/24701556.2021.1978496
  • Önem E, Sarısu HC, Ibrahim B (2020). The effect of Rheum ribes L. extracts on bacterial communication and antibacterial activity. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 11(4): 436-442.
  • Öztürk M, Aydoğmuş-Öztürk F, Duru ME, Topçu G (2007). Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chemistry 103(2): 623-630. https://doi.org/10.1016/j.foodchem.2006.09.005
  • Peng H, Marians KJ (1995). The Interaction of Escherichia coli Topoisomerase IV with DNA (∗). Journal of Biological Chemistry 270(42): 25286-25290.
  • Prakash C, Kumar KV, Pooja A, and Kumar V (2015). Structural and molecular alterations in arsenic-induced hepatic oxidative stress in rats: a FTIR study. Toxicological and Environmental Chemistry 97(10): 1408-1421. https://doi.org/10.1080/02772248.2015.1102425
  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011). Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 377(1): 212-216. https://doi.org/10.1016/j.colsurfa.2010.12.047
  • Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 99: 166-173. https://doi.org/https://doi.org/10.1016/j.saa.2012.08.081
  • Rana A, Chaudhary AK, Saini S, Srivastava R, Kumar M, Sharma SN (2023). Ultrafast transient absorption spectroscopic (UFTAS) and antibacterial efficacy studies of phytofabricated silver nanoparticles using Ocimum sanctum leaf extract. Inorganic Chemistry Communications 147: 110233. https://doi.org/10.1016/j.inoche.2022.110233
  • Ray PC (2010). Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical Reviews 110(9): 5332-5365. https://doi.org/https://doi.org/10.1021/cr900335q
  • Roca J (1995). The mechanisms of DNA topoisomerases. Trends in Biochemical Sciences, 20(4), 156-160. Shockravi A, Nasiri KA (1997). Synthesis of 1, 2, 3, 4, 5, 6, 7, 8-Octahydro-9-ethoxy-10-hydroxy-1-anthracenone [OEHA]. Iranian Journal of Chemistry 16(1): 10-14.
  • Smuleac V, Varma R, Baruwati B, Sikdar S, Bhattacharyya D (2011). Nanostructured membranes for enzyme catalysis and green synthesis of nanoparticles. ChemSusChem 4(12): 1773-1777. https://doi.org/https://doi.org/10.1002/cssc.201100211
  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011). Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. Journal of membrane science 379(1-2): 131-137. https://doi.org/https://doi.org/10.1016/j.memsci.2011.05.054
  • Tabata M, Sezik E, Honda G, Yeşilada E, Fukui H, Goto K, Ikeshiro Y (1994). Traditional medicine in Turkey III. Folk medicine in east Anatolia, Van and Bitlis provinces. International Journal of Pharmacognosy 32(1): 3-12.
  • Taghavizadeh Yazdi ME, Khara J, Housaindokht MR, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Sadegh Amiri M, Mosawee H, Taherzadeh D, Darroudi M (2019). Role of Ribes khorassanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotechnology 13(2): 189-192.
  • Thakkar KN, Mhatre SS, Parikh RY (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine 6(2): 257-262.
  • Thirumagal N, Jeyakumari AP (2020). Structural, optical and antibacterial properties of green synthesized silver nanoparticles (AgNPs) using Justicia adhatoda L. leaf extract. Journal of Cluster Science 31(2): 487-497.
  • Ünal İ, Eğri S (2022). Biosynthesis of silver nanoparticles using the aqueous extract of Rheum ribes, characterization and the evaluation of its toxicity on HUVECs and Artemia salina. Inorganic and Nano-Metal Chemistry 54(7): 658-671. DOI: 10.1080/24701556.2022.2081201
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation 17(10): 6281-6291. https://doi.org/https://doi.org/10.1021/acs.jctc.1c00645
  • Verma A, Mehata MS (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences 9(1): 109-115. https://doi.org/10.1016/j.jrras.2015.11.001
  • Virkutyte J, Varma RS (2011). Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science 2(5): 837-846. https://doi.org/https://doi.org/10.1039/C0SC00338G
  • Yenigün S, Yunus B, Yasar I, Lutfi B, Ibrahim D, and Ozen T (2024a). Comprehensive evaluation of Ixoroside: An iridoid glycoside from Nepeta aristata and N. baytopii, assessing antioxidant, antimicrobial, enzyme inhibitory, DNA protective properties, with computational and pharmacokinetic analyses. Journal of Biologically Active Products from Nature 14(3): 286-315. https://doi.org/10.1080/22311866.2024.2358785
  • Yenigün S, Yunus B, Yasar I, Lutfi B, Ibrahim D, and Ozen T (2024b). DNA protection, molecular docking, molecular dynamic, enzyme inhibition, and kinetics studies of apigenin isolated from Nepeta baytopii Hedge & Lamond by bioactivity-guided fractionation. Journal of Biomolecular Structure and Dynamics 2024: 1-12. https://doi.org/10.1080/07391102.2024.2442753
  • Yıdız İ, Başar Y, Erenler R, Alma MH, Calimli MH (2024). A phytochemical content analysis, and antioxidant activity evaluation using a novel method on Melilotus officinalis flower. South African Journal of Botany 174: 686-693. https://doi.org/https://doi.org/10.1016/j.sajb.2024.09.060
  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C 41: 17-27. https://doi.org/https://doi.org/10.1016/j.msec.2014.04.025
  • Zhang W, Qiao X, Chen J, Wang H (2006). Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. Journal of Colloid and Interface Science 302(1): 370-373. https://doi.org/https://doi.org/10.1016/j.jcis.2006.06.035
  • Zor M, Baran MF, İpek DNS (2024). Rapid synthesis of silver nanoparticles with Rheum ribes L fruit peels: Anticancer and antimicrobial effects with biocompatible structures. Journal of Agricultural Sciences 30(2): 386-399. https://doi.org/10.15832/ankutbd.1380604

Rheum ribes'in farklı kısımlarından ekstrakt ve gümüş nanopartiküller: Karakterizasyonu, in vitro antibakteriyel ve antioksidan aktiviteleri ve in silico moleküler dinamik çalışmaları

Year 2025, Volume: 9 Issue: 2, 114 - 126
https://doi.org/10.30616/ajb.1654542

Abstract

Rheum ribes, çeşitli çalışmalarla doğrulanmış antioksidan ve antibakteriyel etkilere sahip tıbbi bir bitkidir. Bu çalışmada, R. ribes'ten elde edilen meyve ve kabuk özütlerinin biyolojik aktiviteleri (antioksidan ve antimikrobiyal) ve fitokimyasal içerikleri (toplam fenolik içerik ve LC-ESI-MS/MS ile fenolik madde içeriği) belirlenmiştir. R. ribes'in antioksidan içeriği (DPPH˙ ve FRAP) ve toplam fenolik içeriği (FCR) ilk kez yeni bir potansiyometrik biyosensör yöntemi kullanılarak analiz edilmiştir. Ayrıca, çevre dostu yeşil sentez yöntemi ile elde edilen gümüş nanopartiküllerin (AgNP) karakteristik özellikleri (XRD, FT-IR, FE-SEM, FESEM-EDX, TEM ve UV-Vis) ve antibakteriyel özellikleri incelenmiştir. Ayrıca, LC-ESI-MS/MS içerik analizlerinde ana bileşenin (hesperidin) topoizomeraz IV ile etkileşimleri teorik olarak moleküler yerleştirme ile hesaplandı. R. ribes kabuk özütünün antioksidan aktivitesi meyve özütüne benzerken, FRAP ve DPPH˙ süpürücü aktivitesi için daha yüksekti. R. ribes meyve-AgNP'lerinin mikroorganizmalara karşı yüksek aktiviteye sahip olduğu görüldü. Hesperidin ve hesperidin-AgNP MolDock skorları sırasıyla; -111.83 ve -171.08 olarak hesaplndı. Dolayısıyla hesperidin-AgNP kompleksinin, hesperidin’den daha yüksek inhibitor özelliğine sahip olduğu gözlendi. 100 ns MD simülasyonunda, RMSD değerlerinin 10 nm'de sabit olduğu ve MM/PBSA hesaplaması hesperidin için -16.15 kcal/mol'lük bir bağlanma enerjisi hesaplandı.

References

  • Abdulla KK, Taha EM, Rahim SM (2014). Phenolic profile, antioxidant, and antibacterial effects of ethanol and aqueous extracts of Rheum ribes L. roots. Der Pharmacia Lettre 7(4): 26-30.
  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19-25. https://doi.org/https://doi.org/10.1016/j.softx.2015.06.001
  • Abu-Irmaileh BE, Afifi FU (2003). Herbal medicine in Jordan with special emphasis on commonly used herbs. Journal of Ethnopharmacology 89(2-3): 193-197.
  • Ahmad N, Bhatnagar S, Ali SS, Dutta R (2015). Phytofabrication of bioinduced silver nanoparticles for biomedical applications. International journal of nanomedicine 2015 10: 7019-7030. https://doi.org/https://doi.org/10.2147/IJN.S94479
  • Ajitha B, Reddy YAK, Reddy PS (2014). Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121: 164-172.
  • Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T (2023). Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. Journal of Biomolecular Structure and Dynamics 41(14): 6695-6708. https://doi.org/https://doi.org/10.1080/07391102.2022.2111360
  • Aktepe N, Baran A (2022). Green synthesis and antimicrobial effects of silver nanoparticles by pumpkin cucurbita maxima fruit fiber. Medicine Science 11: 794-799.
  • Amin HDM, Lazim ZS, Nashi TA (2023). Phytochemical screening of Rheum ribes Root, Leaves and Flowering Stem and Biological Activity of the Root. Fifth International Conference for Agricultural and Environment Sciences, 1158 (2023): 042068, pp. 1-14.
  • Asghar MA, Yousuf RI, Shoaib MH, Asghar MA (2020). Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. International Journal of Biological Macromolecules 160: 934-943.
  • Atarod M, Nasrollahzadeh M, Sajadi SM (2015). Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B [10.1039/C5RA17269A]. RSC Advances 5(111): 91532-91543. https://doi.org/10.1039/C5RA17269A
  • Auda MM, Shareef HA, Mohammed BL (2021). Green synthesis of Silver Nanoparticles using the extract of Rheum ribes and evaluating their antifungal activity against some of Candida sp. Tikrit Journal of Pure Science 26(2): 53-59.
  • Aygün A, Gülbağça F, Nas MS, Alma MH, Çalımlı MH, Ustaoglu B, Altunoglu YC, Baloğlu MC, Cellat K, Şen F (2020). Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. Journal of Pharmaceutical and Biomedical Analysis 179: 113012.
  • Balavijayalakshmi J, Ramalakshmi V (2017). Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of applied research and technology 15(5): 413-422. https://doi.org/https://doi.org/10.1016/j.jart.2017.03.010
  • Basavegowda N, Idhayadhulla A, Lee YR (2014). Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Materials Science and Engineering: C 43: 58-64.
  • Başar Y, Demirtaş İ, Yenigün S, İpek Y, Özen T, Behçet L (2024c). Molecular docking, molecular dynamics, MM/PBSA approaches and bioactivity studies of nepetanudoside B isolated from endemic Nepeta aristata. Journal of Biomolecular Structure and Dynamics PMID: 38288959. https://doi.org/https://doi.org/10.1080/07391102.2024.2309641
  • Başar Y, Hosaflıoğlu İ, Erenler R (2024b). Phytochemical analysis of Robinia pseudoacacia flowers and leaf: quantitative analysis of natural compounds and molecular docking application. Turkish Journal of Biodiversity 7(1): 1-10. https://doi.org/10.38059/biodiversity.1446241
  • Başar Y, Yiğit A, Karacalı Tunç A, Sarıtaş BM (2024a). Lavandula stoechas extract; synthesis of silver nanoparticles (nature-friendly green synthesis method), characterization, antimicrobial activity and in silico molecular docking study. Current Perspectives on Medicinal and Aromatic Plants 7(1): 24-33. https://doi.org/10.38093/cupmap.1461976
  • Bindhani B, Panigrahi A (2015). Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum sanctum L (Tulsi) and study of its antibacterial activities. Journal of Nanomedicine & Nanotechnology S6: 008. doi:10.4172/2157-7439.S6-008
  • Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010). Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of chemical theory and computation 6(2): 459-466. https://doi.org/https://doi.org/10.1021/ct900549r
  • Chi GF, Khan S, Başar Y, Kuete JRN, Matieta VY, Kuete JBT, Megaptche JF, Chongong MA, Yenigün S, Ayimele GA, Mbaveng AT, Kuete V, Shaheen F (2025). Antibacterial flavonoids from Tetrapleura tetraptera (Fabaceae) fruit pulp, in silico studies. South African Journal of Botany 180: 96-106. https://doi.org/https://doi.org/10.1016/j.sajb.2025.02.026
  • Cullen J (1967). Rheum L. In: Davis PH (ed.) In Flora of Turkey and the East Aegean Islands, Vol. 2, ,). UK: Edinburgh University Press. pp. 268–269.
  • Dananjaya S, Kumar RS, Yang M, Nikapitiya C, Lee J, De Zoysa M (2018). Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. International Journal of Biological Macromolecules 108: 1281-1288.
  • Gautam V, Nimmanpipug P, Zain SM, Rahman NA, Lee VS (2021). Molecular dynamics simulations in designing DARPins as phosphorylation-specific protein binders of ERK2. Molecules 26(15): 4540. https://doi.org/https://doi.org/10.3390/molecules26154540
  • Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports 9(1): 13071. https://doi.org/10.1038/s41598-019-49444-y
  • He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, Zhang K, Zhao F (2013). Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int J Nanomedicine 8: 1809-1815.
  • Hlapisi N, Songca S, Ajibade P (2024). Morphological and structural properties of silver/chlorargyrite nanoparticles prepared using Senecio madagascariensis leaf extract and interaction studies with bovine serum albumin. MRS Advances 9: 830-836. https://doi.org/10.1557/s43580-024-00826-z
  • Işıldak Ö, Yıldız I, Genc N (2022). A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chemistry 373(Pt A): 131420. https://doi.org/10.1016/j.foodchem.2021.131420
  • Işıldak Ö, Yıldız I, Genç N, Sabanci D, Işıldak İ (2023). New potentiometric PVC membrane electrode for ferric reduction antioxidant power assay. Food Chemistry 423: 136261. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.136261
  • Işıldak Ö, Yıldız İ (2024). New potentiometric sensor for total phenolic assay of plant extracts. Bulletin of the Chemical Society of Japan 97(5): uoae043. https://doi.org/10.1093/bulcsj/uoae043
  • Jana J, Ganguly M, Pal T (2016). Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances 6(89): 86174-86211. https://doi.org/10.1039/C6RA14173K
  • Jayarambabu N, Akshaykranth A, Rao TV, Rao KV, Kumar RR (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters 259: 126813. https://doi.org/https://doi.org/10.1016/j.matlet.2019.126813
  • Kampranis SC, Maxwell A (1996). Conversion of DNA gyrase into a conventional type II topoisomerase. Proceedings of the National Academy of Sciences 93(25): 14416-14421.
  • Kashiwada Y, Nonaka G-I, Nishioka I, Yamagishi T (1988). Galloyl and hydroxycinnamoylglucoses from rhubarb. Phytochemistry 27(5): 1473-1477.
  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG (2018). Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy 10: 9-15. https://doi.org/https://doi.org/10.1016/j.scp.2018.08.001
  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: nanotechnology, biology and medicine 3(1): 95-101. https://doi.org/https://doi.org/10.1016/j.nano.2006.12.001
  • Lateef A, Ojo SA, Elegbede JA (2016). The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnology Reviews 5(6): 601-622. https://doi.org/https://doi.org/10.1515/ntrev-2016-0049
  • Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery 13(1): 23-37. https://doi.org/https://doi.org/10.1080/17460441.2018.1403419
  • Majewski M, Ruiz-Carmona S, Barril X (2019). An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry 2(1): 110. https://doi.org/https://doi.org/10.1038/s42004-019-0205-5
  • Naeimi Z, Neamati A, Homayouni-Tabrizi M (2019). Evaluation of antioxidant, anti-cancer and anti-inflammatory characteristics of bio-synthesized silver nanoparticles produced by waste extract of Rheum ribes L. Feyz Medical Sciences Journal 23(3): 241-252.
  • Nandana CN, Christeena M, Bharathi D (2021). Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. Journal of Cluster Science 33: 269-279. DOI: 10.1007/s10876-020-01947-9
  • Öztürk D, Özgüven A, Yonten V, Ertaş M (2022). Green synthesis, characterization and antimicrobial activity of silver nanoparticles using Ornithogalum narbonense L. Inorganic and Nano-Metal Chemistry 52(3): 329-341. DOI: 10.1080/24701556.2021.1978496
  • Önem E, Sarısu HC, Ibrahim B (2020). The effect of Rheum ribes L. extracts on bacterial communication and antibacterial activity. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 11(4): 436-442.
  • Öztürk M, Aydoğmuş-Öztürk F, Duru ME, Topçu G (2007). Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chemistry 103(2): 623-630. https://doi.org/10.1016/j.foodchem.2006.09.005
  • Peng H, Marians KJ (1995). The Interaction of Escherichia coli Topoisomerase IV with DNA (∗). Journal of Biological Chemistry 270(42): 25286-25290.
  • Prakash C, Kumar KV, Pooja A, and Kumar V (2015). Structural and molecular alterations in arsenic-induced hepatic oxidative stress in rats: a FTIR study. Toxicological and Environmental Chemistry 97(10): 1408-1421. https://doi.org/10.1080/02772248.2015.1102425
  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011). Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 377(1): 212-216. https://doi.org/10.1016/j.colsurfa.2010.12.047
  • Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 99: 166-173. https://doi.org/https://doi.org/10.1016/j.saa.2012.08.081
  • Rana A, Chaudhary AK, Saini S, Srivastava R, Kumar M, Sharma SN (2023). Ultrafast transient absorption spectroscopic (UFTAS) and antibacterial efficacy studies of phytofabricated silver nanoparticles using Ocimum sanctum leaf extract. Inorganic Chemistry Communications 147: 110233. https://doi.org/10.1016/j.inoche.2022.110233
  • Ray PC (2010). Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical Reviews 110(9): 5332-5365. https://doi.org/https://doi.org/10.1021/cr900335q
  • Roca J (1995). The mechanisms of DNA topoisomerases. Trends in Biochemical Sciences, 20(4), 156-160. Shockravi A, Nasiri KA (1997). Synthesis of 1, 2, 3, 4, 5, 6, 7, 8-Octahydro-9-ethoxy-10-hydroxy-1-anthracenone [OEHA]. Iranian Journal of Chemistry 16(1): 10-14.
  • Smuleac V, Varma R, Baruwati B, Sikdar S, Bhattacharyya D (2011). Nanostructured membranes for enzyme catalysis and green synthesis of nanoparticles. ChemSusChem 4(12): 1773-1777. https://doi.org/https://doi.org/10.1002/cssc.201100211
  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011). Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. Journal of membrane science 379(1-2): 131-137. https://doi.org/https://doi.org/10.1016/j.memsci.2011.05.054
  • Tabata M, Sezik E, Honda G, Yeşilada E, Fukui H, Goto K, Ikeshiro Y (1994). Traditional medicine in Turkey III. Folk medicine in east Anatolia, Van and Bitlis provinces. International Journal of Pharmacognosy 32(1): 3-12.
  • Taghavizadeh Yazdi ME, Khara J, Housaindokht MR, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Sadegh Amiri M, Mosawee H, Taherzadeh D, Darroudi M (2019). Role of Ribes khorassanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotechnology 13(2): 189-192.
  • Thakkar KN, Mhatre SS, Parikh RY (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine 6(2): 257-262.
  • Thirumagal N, Jeyakumari AP (2020). Structural, optical and antibacterial properties of green synthesized silver nanoparticles (AgNPs) using Justicia adhatoda L. leaf extract. Journal of Cluster Science 31(2): 487-497.
  • Ünal İ, Eğri S (2022). Biosynthesis of silver nanoparticles using the aqueous extract of Rheum ribes, characterization and the evaluation of its toxicity on HUVECs and Artemia salina. Inorganic and Nano-Metal Chemistry 54(7): 658-671. DOI: 10.1080/24701556.2022.2081201
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation 17(10): 6281-6291. https://doi.org/https://doi.org/10.1021/acs.jctc.1c00645
  • Verma A, Mehata MS (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences 9(1): 109-115. https://doi.org/10.1016/j.jrras.2015.11.001
  • Virkutyte J, Varma RS (2011). Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science 2(5): 837-846. https://doi.org/https://doi.org/10.1039/C0SC00338G
  • Yenigün S, Yunus B, Yasar I, Lutfi B, Ibrahim D, and Ozen T (2024a). Comprehensive evaluation of Ixoroside: An iridoid glycoside from Nepeta aristata and N. baytopii, assessing antioxidant, antimicrobial, enzyme inhibitory, DNA protective properties, with computational and pharmacokinetic analyses. Journal of Biologically Active Products from Nature 14(3): 286-315. https://doi.org/10.1080/22311866.2024.2358785
  • Yenigün S, Yunus B, Yasar I, Lutfi B, Ibrahim D, and Ozen T (2024b). DNA protection, molecular docking, molecular dynamic, enzyme inhibition, and kinetics studies of apigenin isolated from Nepeta baytopii Hedge & Lamond by bioactivity-guided fractionation. Journal of Biomolecular Structure and Dynamics 2024: 1-12. https://doi.org/10.1080/07391102.2024.2442753
  • Yıdız İ, Başar Y, Erenler R, Alma MH, Calimli MH (2024). A phytochemical content analysis, and antioxidant activity evaluation using a novel method on Melilotus officinalis flower. South African Journal of Botany 174: 686-693. https://doi.org/https://doi.org/10.1016/j.sajb.2024.09.060
  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C 41: 17-27. https://doi.org/https://doi.org/10.1016/j.msec.2014.04.025
  • Zhang W, Qiao X, Chen J, Wang H (2006). Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. Journal of Colloid and Interface Science 302(1): 370-373. https://doi.org/https://doi.org/10.1016/j.jcis.2006.06.035
  • Zor M, Baran MF, İpek DNS (2024). Rapid synthesis of silver nanoparticles with Rheum ribes L fruit peels: Anticancer and antimicrobial effects with biocompatible structures. Journal of Agricultural Sciences 30(2): 386-399. https://doi.org/10.15832/ankutbd.1380604
There are 66 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology, Microbiology (Other), Organic Chemistry (Other)
Journal Section Articles
Authors

Aybek Yiğit 0000-0001-8279-5908

Yunus Başar 0000-0002-7785-3242

Semiha Yenigün 0000-0002-1979-5427

Mehmet Hakkı Alma 0000-0001-6323-7230

Ayşe Karacalı Tunç 0000-0002-6453-9887

Ahmet Zafer Tel 0000-0002-1204-3839

Early Pub Date August 26, 2025
Publication Date September 26, 2025
Submission Date March 10, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Yiğit, A., Başar, Y., Yenigün, S., … Alma, M. H. (2025). Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies. Anatolian Journal of Botany, 9(2), 114-126. https://doi.org/10.30616/ajb.1654542
AMA Yiğit A, Başar Y, Yenigün S, Alma MH, Karacalı Tunç A, Tel AZ. Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies. Ant J Bot. August 2025;9(2):114-126. doi:10.30616/ajb.1654542
Chicago Yiğit, Aybek, Yunus Başar, Semiha Yenigün, Mehmet Hakkı Alma, Ayşe Karacalı Tunç, and Ahmet Zafer Tel. “Extracts and Silver Nanoparticles from Different Parts of Rheum Ribes: Characterization, in Vitro Antibacterial, and Antioxidant Activities, and in Silico Molecular Dynamics Studies”. Anatolian Journal of Botany 9, no. 2 (August 2025): 114-26. https://doi.org/10.30616/ajb.1654542.
EndNote Yiğit A, Başar Y, Yenigün S, Alma MH, Karacalı Tunç A, Tel AZ (August 1, 2025) Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies. Anatolian Journal of Botany 9 2 114–126.
IEEE A. Yiğit, Y. Başar, S. Yenigün, M. H. Alma, A. Karacalı Tunç, and A. Z. Tel, “Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies”, Ant J Bot, vol. 9, no. 2, pp. 114–126, 2025, doi: 10.30616/ajb.1654542.
ISNAD Yiğit, Aybek et al. “Extracts and Silver Nanoparticles from Different Parts of Rheum Ribes: Characterization, in Vitro Antibacterial, and Antioxidant Activities, and in Silico Molecular Dynamics Studies”. Anatolian Journal of Botany 9/2 (August2025), 114-126. https://doi.org/10.30616/ajb.1654542.
JAMA Yiğit A, Başar Y, Yenigün S, Alma MH, Karacalı Tunç A, Tel AZ. Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies. Ant J Bot. 2025;9:114–126.
MLA Yiğit, Aybek et al. “Extracts and Silver Nanoparticles from Different Parts of Rheum Ribes: Characterization, in Vitro Antibacterial, and Antioxidant Activities, and in Silico Molecular Dynamics Studies”. Anatolian Journal of Botany, vol. 9, no. 2, 2025, pp. 114-26, doi:10.30616/ajb.1654542.
Vancouver Yiğit A, Başar Y, Yenigün S, Alma MH, Karacalı Tunç A, Tel AZ. Extracts and silver nanoparticles from different parts of Rheum ribes: Characterization, in vitro antibacterial, and antioxidant activities, and in silico molecular dynamics studies. Ant J Bot. 2025;9(2):114-26.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.