Research Article
PDF EndNote BibTex RIS Cite

Year 2020, Volume 1, Issue 1, 22 - 30, 30.06.2020

Abstract

References

  • [1] Jill Seladi-Schulman. “Are Bacterial Infections Contagious?”. Healthline.com. https://www.healthline.com/health/are-bacterial-infections-contagious#vs-viral-infections (accessed March 16, 2020).
  • [2] H. Akgun, A. Balkan, A. A. Bilgin, U. Calıs, S. Dalkara et al. Pharmaceutical Chemistry. 3rd ed. Ankara, Turkey: Hacettepe University Publications, 2013. ISBN: 978-975-491-171-8.
  • [3] T. L. Lemke, S. W. Zito, V. F. Roche, D. A. Williams, “Chemotherapy: Antiviral and Antiretroviral Drugs,” in Essentials of Foye's Principles of Medicinal Chemistry, O. Algul and K. Bolelli, transl. Eds., Ankara, Turkey: Nobel Medical Bookstore, 2019, pp. 559-591. ISBN: 978-605.7578-13-6.
  • [4] W. Cunico, C. Gomes, W. Vellasco Jr., “Chemistry and Biological Activities of 1,3-Thiazolidin-4-ones,” Mini. Rev. Org. Chem., vol. 5, no. 4, pp. 336–344, Nov. 2008, doi: 10.2174/157019308786242232.
  • [5] A. C. Tripathi, S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma et al., “4-Thiazolidinones: The advances continue,” Eur. J. Med. Chem., vol. 72, pp. 52–77, Jan. 2014, doi: 10.1016/j.ejmech.2013.11.017.
  • [6] F. Göktaş, E. Vanderlinden, L. Naesens, Z. Cesur, N. Cesur et al., “Synthesis and Structure-Activity Relationship of N-(3-Oxo-1-Thia-4-Azaspiro[4.5]Decan-4-Yl)Carboxamide Inhibitors of Influenza Virus Hemagglutinin Mediated Fusion.” Phosphorus, Sulfur Silicon Relat. Elem., vol. 190, no. 7, pp. 1075–1087, Jan. 2018, doi: 10.1080/10426507.2014.965819.
  • [7] A. K. Jain, A. Vaidya, V. Ravichandran, S. K. Kashaw, R. K. Agrawal, “Recent developments and biological activities of thiazolidinone derivatives: A review,” Bioorg. Med. Chem., vol. 20, no. 11, pp. 3378–3395, Jun. 2012, doi: 10.1016/j.bmc.2012.03.069.
  • [8] K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Soković et al., “Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs,” Bioorg. Med. Chem., vol. 18, no. 1, pp. 426–432, Jan. 2010, doi: 10.1016/j.bmc.2009.10.041.
  • [9] K. A. Szychowski, M. L. Leja, D. V. Kaminskyy, U. E. Binduga, O. R. Pinyazhko et al., “Study of novel anticancer 4-thiazolidinone derivatives,” Chem. Biol. Interact., vol. 262, pp. 46–56, Jan. 2017, doi: 10.1016/j.cbi.2016.12.008.
  • [10] M. Abhinit, M. Ghodke, N. A. Pratima, “Exploring potential of 4-thiazolidinone: A brief review,” Int. J. Pharm. Pharm. Sci., vol. 1, pp. 47–64, Jan. 2009.
  • [11] K. A. Szychowski, M. L. Leja, D. V. Kaminskyy, A. P. Kryshchyshyn, U. E. Binduga et al., “Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ),” Eur. J. Med. Chem., vol. 141, pp. 162–168, Dec. 2017, doi: 10.1016/j.ejmech.2017.09.071.
  • [12] Ö. Güzel and A. Salman, “Synthesis and biological evaluation of new 4-thiazolidinone derivatives,” J. Enzyme Inhib. Med. Chem., vol. 24, no. 4, pp. 1015–1023, Jul. 2009, doi: 10.1080/14756360802608021.
  • [13] C. T. Sadashiva, J. N. Narendra Sharath Chandra, C. V. Kavitha, A. Thimmegowda, M. N. Subhash et al., “Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer’s dementia models,” Eur. J. Med. Chem., vol. 44, no. 12, pp. 4848–4854, Dec. 2009, doi: 10.1016/j.ejmech.2009.07.026.
  • [14] A. Kumar, C. S. Rajput, S. K. Bhati, “Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent,” Bioorg. Med. Chem., vol. 15, no. 8, pp. 3089–3096, Apr. 2007, doi: 10.1016/j.bmc.2007.01.042.
  • [15] S. K. Manjal, R. Kaur, R. Bhatia, K. Kumar, V. Singh et al., “Synthetic and medicinal perspective of thiazolidinones: A review,” Bioorg. Chem., vol. 75, pp. 406–423, Dec. 2017, doi: 10.1016/j.bioorg.2017.10.014.
  • [16] A. Kolarević, B. S. Ilić, G. Kocić, Z. Džambaski, A. Šmelcerović et al., “Synthesis and DNase I inhibitory properties of some 4-thiazolidinone derivatives,” J. Cell. Biochem., vol. 120, no. 1, pp. 264–274, Jan. 2019, doi: 10.1002/jcb.27339.
  • [17] A. O. Patil, T. K. Patel, A. R. Patil, C. S. Patil, S. T. Patil et al., “Chemistry & Biological Activities of 4- Thiazolidinone,” World J. Pharm. Pharm. Sci., vol. 4, no. 05, pp. 1780–1791, Apr. 2015.
  • [18] F. Göktaş, E. Vanderlinden, L. Naesens, N. Cesur, Z. Cesur, “Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives,” Bioorg. Med. Chem., vol. 20, no. 24, pp. 7155–7159, Dec. 2012, doi: 10.1016/j.bmc.2012.09.064.
  • [19] İ. Küçükgüzel, G. Satılmış, K. R. Gurukumar, A. Basu, E. Tatar et al., “2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase,” Eur. J. Med. Chem., vol. 69, pp. 931-941, Nov. 2013, doi: 10.1016/j.ejmech.2013.08.043.
  • [20] H. Chen, J. Bai, L. Jiao, Z. Guo, Q. Yin et al., “Design, microwave-assisted synthesis and HIV-RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(4,6-dimethyl-5-(un)substituted-pyrimidin-2-yl)- thiazolidin-4-ones,” Bioorg. Med. Chem., vol. 17, no. 11, pp. 3980–3986, Jun. 2009, doi: 10.1016/j.bmc.2009.04.024.
  • [21] H. J. Field and M. A. Wainberg, “Antiviral drug development,” Futur. Virol., vol. 6, no. 5, pp. 545–547, May 2011, doi: 10.2217/fvl.11.36.
  • [22] N. Cesur, Z. Cesur, H. Guner, B. O. Kasımoğulları, “Fused Heterocycles: Synthesis of Some New Imidazothiazoles,” Heterocycl. Commun., vol. 8, no. 5, pp. 433–438, Jan. 2002, doi: 10.1515/HC.2002.8.5.433.
  • [23] H. Oa, M. Obata, T. Yamanaka, H. Mikashima, “Oxadiazinylimidazopyridines, -pyrimidines, and -thiazoles,” PCT Int. Appl. WO 8607059, Dec. 04, 1986.
  • [24] F. Ur, N. Cesur, S. Birteksöz, G. Ötük, “Synthesis of Some New 6-Methylimidazo[2,1-b]thiazole-5-carbohydrazide Derivatives and their Antimicrobial Activities,” Arzneimittelforschung., vol. 54, no. 2, pp. 125-129, 2004, doi: 10.1055/s-0031-1296947.
  • [25] B. O. Kasimogullari and Z. Cesur, “Fused Heterocycles: Synthesis of Some New Imidazo[1,2-a]pyridine Derivatives,” Molecules vol. 9, no. 10, pp. 894–901, Oct. 2004, doi: 10.3390/91000894.
  • [26] G. Küçükgüzel, A. Kocatepe, E. De Clercq, F. Şahin, M. Güllüce, “Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide,” Eur. J. Med. Chem., vol. 41, no. 3, pp. 353–359, Mar. 2006, doi: 10.1016/j.ejmech.2005.11.005.
  • [27] H. Demir, “Synthesis and evaluation of pyridine-3-carbohydrazide derivatives,” M.Sc. dissertation, Dept. Pharm. Chem., Istanbul Univ., Istanbul, 2010.
  • [28] G. Cihan, “Studies on benzylidene hydrazide and 4-thiazolidinone derivatives carrying an indole nucleus,” Ph.D. dissertation, Dept. Pharm. Chem., Istanbul Univ., Istanbul, 2010.
  • [29] S. Ozkirimli, F. Kazan, Y. Tunali, “Synthesis, antibacterial and antifungal activities of 3-(1,2,4-triazol-3-yl)-4-thiazolidinones,” J. Enzyme Inhib. Med. Chem., vol. 24, no. 2, pp. 447-452, Apr. 2009, doi: 10.1080/14756360802188511.
  • [30] R. V. Shingalapur, K. M. Hosamani, R. S. Keri, M. H. Hugar, “Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies,” Eur. J. Med. Chem., vol. 45, no. 5, pp. 1753–1759, May 2010, doi: 10.1016/j.ejmech.2010.01.007.
  • [31] P. D. Neuenfeldt, A. R. Duval, B. B. Drawanz, P. F. Rosales, C. R. B. Gomes et al., “Efficient sonochemical synthesis of thiazolidinones from piperonilamine,” Ultrason. Sonochem., vol. 18, no. 1, pp. 65–67, Jan. 2011, doi: 10.1016/j.ultsonch.2010.07.008.
  • [32] A. J. Vlietinck, “ Screening Methods for Detection and Evaluation of Biological Activities of Plant Preparations,” in Bioassay Methods in Natural Product Research and Drug Development, L. Bohlin and J. G. Bruhn, Eds., Dordrecht, Netherlands: Springer, 2014, pp. 37-52. ISBN 978-94-010-6019-6.
  • [33] N. Ulusoy Güzeldemirci, E. Pehlivan, Z. Halamoğlu, A. Kocabalkanlı, “Synthesis and antiviral activity evaluation of some new cyclohexylidenehydrazide derivatives of 1,3-thiazole core,” Marmara Pharm. J., vol. 20, pp. 207-215, Apr. 2016, doi: 10.12991/mpj.20162019913.
  • [34] A. M. De Palma, W. Heggermont, P. Leyssen, G. Pu, E. Wimmer et al., “Anti-enterovirus activity and structure-activity relationship of a series of 2,6-dihalophenyl-substituted 1H,3H-thiazolo[3,4-a]benzimidazoles,” Biochem. Biophys. Res. Commun., vol. 353, no. 3, pp. 628–632, Mar. 2007, doi: 10.1016/j.bbrc.2006.12.063.
  • [35] E. Vanderlinden, F. Goktas, Z. Cesur, M. Froeyen, M. L. Reed et al., “Novel Inhibitors of Influenza Virus Fusion: Structure-Activity Relationship and Interaction with the Viral Hemagglutinin,” J. Virol., vol. 84, no. 9, pp. 4277–4288, May 2010, doi: 10.1128/JVI.02325-09.
  • [36] J. C. Pritchett, L. Naesens, J. Montoya, “Treating HHV-6 Infections: The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents,” 3rd ed., Elsevier Inc., 2014.

Synthesis, Characterization and Antiviral Activities of Some Novel 4-Thiazolidinones Derived from Imidazo[2,1-b][1,3]thiazole-5-carbohydrazide Hydrazones

Year 2020, Volume 1, Issue 1, 22 - 30, 30.06.2020

Abstract

The present study describes the synthesis, characterization and antiviral activity evaluation of some novel 5-(nonsubstitue/methyl)-4-oxo-2-(substituted phenyl)-1,3-thiazolidine-4-one derivatives bearing an imidazo[2,1-b][1,3]thiazole-5-carboxamide moiety at N-3 position of the 4-thiazolidinone ring. The structures of the new 4-thiazolidinone compounds were confirmed by the data obtained from elemental analysis, IR, 1H-NMR, 13C-NMR (proton decoupled) and 13C-NMR (APT) spectra. The cytotoxicities and antiviral activities of 4-thiazolidinones were evaluated in-vitro against different types of DNA and RNA viruses in different cell cultures. Neither of the compounds had anti-influenza and anti-HIV activities, but 4c and 5d showed some degree of antiviral activity against the other tested virus types.

References

  • [1] Jill Seladi-Schulman. “Are Bacterial Infections Contagious?”. Healthline.com. https://www.healthline.com/health/are-bacterial-infections-contagious#vs-viral-infections (accessed March 16, 2020).
  • [2] H. Akgun, A. Balkan, A. A. Bilgin, U. Calıs, S. Dalkara et al. Pharmaceutical Chemistry. 3rd ed. Ankara, Turkey: Hacettepe University Publications, 2013. ISBN: 978-975-491-171-8.
  • [3] T. L. Lemke, S. W. Zito, V. F. Roche, D. A. Williams, “Chemotherapy: Antiviral and Antiretroviral Drugs,” in Essentials of Foye's Principles of Medicinal Chemistry, O. Algul and K. Bolelli, transl. Eds., Ankara, Turkey: Nobel Medical Bookstore, 2019, pp. 559-591. ISBN: 978-605.7578-13-6.
  • [4] W. Cunico, C. Gomes, W. Vellasco Jr., “Chemistry and Biological Activities of 1,3-Thiazolidin-4-ones,” Mini. Rev. Org. Chem., vol. 5, no. 4, pp. 336–344, Nov. 2008, doi: 10.2174/157019308786242232.
  • [5] A. C. Tripathi, S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma et al., “4-Thiazolidinones: The advances continue,” Eur. J. Med. Chem., vol. 72, pp. 52–77, Jan. 2014, doi: 10.1016/j.ejmech.2013.11.017.
  • [6] F. Göktaş, E. Vanderlinden, L. Naesens, Z. Cesur, N. Cesur et al., “Synthesis and Structure-Activity Relationship of N-(3-Oxo-1-Thia-4-Azaspiro[4.5]Decan-4-Yl)Carboxamide Inhibitors of Influenza Virus Hemagglutinin Mediated Fusion.” Phosphorus, Sulfur Silicon Relat. Elem., vol. 190, no. 7, pp. 1075–1087, Jan. 2018, doi: 10.1080/10426507.2014.965819.
  • [7] A. K. Jain, A. Vaidya, V. Ravichandran, S. K. Kashaw, R. K. Agrawal, “Recent developments and biological activities of thiazolidinone derivatives: A review,” Bioorg. Med. Chem., vol. 20, no. 11, pp. 3378–3395, Jun. 2012, doi: 10.1016/j.bmc.2012.03.069.
  • [8] K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Soković et al., “Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs,” Bioorg. Med. Chem., vol. 18, no. 1, pp. 426–432, Jan. 2010, doi: 10.1016/j.bmc.2009.10.041.
  • [9] K. A. Szychowski, M. L. Leja, D. V. Kaminskyy, U. E. Binduga, O. R. Pinyazhko et al., “Study of novel anticancer 4-thiazolidinone derivatives,” Chem. Biol. Interact., vol. 262, pp. 46–56, Jan. 2017, doi: 10.1016/j.cbi.2016.12.008.
  • [10] M. Abhinit, M. Ghodke, N. A. Pratima, “Exploring potential of 4-thiazolidinone: A brief review,” Int. J. Pharm. Pharm. Sci., vol. 1, pp. 47–64, Jan. 2009.
  • [11] K. A. Szychowski, M. L. Leja, D. V. Kaminskyy, A. P. Kryshchyshyn, U. E. Binduga et al., “Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ),” Eur. J. Med. Chem., vol. 141, pp. 162–168, Dec. 2017, doi: 10.1016/j.ejmech.2017.09.071.
  • [12] Ö. Güzel and A. Salman, “Synthesis and biological evaluation of new 4-thiazolidinone derivatives,” J. Enzyme Inhib. Med. Chem., vol. 24, no. 4, pp. 1015–1023, Jul. 2009, doi: 10.1080/14756360802608021.
  • [13] C. T. Sadashiva, J. N. Narendra Sharath Chandra, C. V. Kavitha, A. Thimmegowda, M. N. Subhash et al., “Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer’s dementia models,” Eur. J. Med. Chem., vol. 44, no. 12, pp. 4848–4854, Dec. 2009, doi: 10.1016/j.ejmech.2009.07.026.
  • [14] A. Kumar, C. S. Rajput, S. K. Bhati, “Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent,” Bioorg. Med. Chem., vol. 15, no. 8, pp. 3089–3096, Apr. 2007, doi: 10.1016/j.bmc.2007.01.042.
  • [15] S. K. Manjal, R. Kaur, R. Bhatia, K. Kumar, V. Singh et al., “Synthetic and medicinal perspective of thiazolidinones: A review,” Bioorg. Chem., vol. 75, pp. 406–423, Dec. 2017, doi: 10.1016/j.bioorg.2017.10.014.
  • [16] A. Kolarević, B. S. Ilić, G. Kocić, Z. Džambaski, A. Šmelcerović et al., “Synthesis and DNase I inhibitory properties of some 4-thiazolidinone derivatives,” J. Cell. Biochem., vol. 120, no. 1, pp. 264–274, Jan. 2019, doi: 10.1002/jcb.27339.
  • [17] A. O. Patil, T. K. Patel, A. R. Patil, C. S. Patil, S. T. Patil et al., “Chemistry & Biological Activities of 4- Thiazolidinone,” World J. Pharm. Pharm. Sci., vol. 4, no. 05, pp. 1780–1791, Apr. 2015.
  • [18] F. Göktaş, E. Vanderlinden, L. Naesens, N. Cesur, Z. Cesur, “Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives,” Bioorg. Med. Chem., vol. 20, no. 24, pp. 7155–7159, Dec. 2012, doi: 10.1016/j.bmc.2012.09.064.
  • [19] İ. Küçükgüzel, G. Satılmış, K. R. Gurukumar, A. Basu, E. Tatar et al., “2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase,” Eur. J. Med. Chem., vol. 69, pp. 931-941, Nov. 2013, doi: 10.1016/j.ejmech.2013.08.043.
  • [20] H. Chen, J. Bai, L. Jiao, Z. Guo, Q. Yin et al., “Design, microwave-assisted synthesis and HIV-RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(4,6-dimethyl-5-(un)substituted-pyrimidin-2-yl)- thiazolidin-4-ones,” Bioorg. Med. Chem., vol. 17, no. 11, pp. 3980–3986, Jun. 2009, doi: 10.1016/j.bmc.2009.04.024.
  • [21] H. J. Field and M. A. Wainberg, “Antiviral drug development,” Futur. Virol., vol. 6, no. 5, pp. 545–547, May 2011, doi: 10.2217/fvl.11.36.
  • [22] N. Cesur, Z. Cesur, H. Guner, B. O. Kasımoğulları, “Fused Heterocycles: Synthesis of Some New Imidazothiazoles,” Heterocycl. Commun., vol. 8, no. 5, pp. 433–438, Jan. 2002, doi: 10.1515/HC.2002.8.5.433.
  • [23] H. Oa, M. Obata, T. Yamanaka, H. Mikashima, “Oxadiazinylimidazopyridines, -pyrimidines, and -thiazoles,” PCT Int. Appl. WO 8607059, Dec. 04, 1986.
  • [24] F. Ur, N. Cesur, S. Birteksöz, G. Ötük, “Synthesis of Some New 6-Methylimidazo[2,1-b]thiazole-5-carbohydrazide Derivatives and their Antimicrobial Activities,” Arzneimittelforschung., vol. 54, no. 2, pp. 125-129, 2004, doi: 10.1055/s-0031-1296947.
  • [25] B. O. Kasimogullari and Z. Cesur, “Fused Heterocycles: Synthesis of Some New Imidazo[1,2-a]pyridine Derivatives,” Molecules vol. 9, no. 10, pp. 894–901, Oct. 2004, doi: 10.3390/91000894.
  • [26] G. Küçükgüzel, A. Kocatepe, E. De Clercq, F. Şahin, M. Güllüce, “Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide,” Eur. J. Med. Chem., vol. 41, no. 3, pp. 353–359, Mar. 2006, doi: 10.1016/j.ejmech.2005.11.005.
  • [27] H. Demir, “Synthesis and evaluation of pyridine-3-carbohydrazide derivatives,” M.Sc. dissertation, Dept. Pharm. Chem., Istanbul Univ., Istanbul, 2010.
  • [28] G. Cihan, “Studies on benzylidene hydrazide and 4-thiazolidinone derivatives carrying an indole nucleus,” Ph.D. dissertation, Dept. Pharm. Chem., Istanbul Univ., Istanbul, 2010.
  • [29] S. Ozkirimli, F. Kazan, Y. Tunali, “Synthesis, antibacterial and antifungal activities of 3-(1,2,4-triazol-3-yl)-4-thiazolidinones,” J. Enzyme Inhib. Med. Chem., vol. 24, no. 2, pp. 447-452, Apr. 2009, doi: 10.1080/14756360802188511.
  • [30] R. V. Shingalapur, K. M. Hosamani, R. S. Keri, M. H. Hugar, “Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies,” Eur. J. Med. Chem., vol. 45, no. 5, pp. 1753–1759, May 2010, doi: 10.1016/j.ejmech.2010.01.007.
  • [31] P. D. Neuenfeldt, A. R. Duval, B. B. Drawanz, P. F. Rosales, C. R. B. Gomes et al., “Efficient sonochemical synthesis of thiazolidinones from piperonilamine,” Ultrason. Sonochem., vol. 18, no. 1, pp. 65–67, Jan. 2011, doi: 10.1016/j.ultsonch.2010.07.008.
  • [32] A. J. Vlietinck, “ Screening Methods for Detection and Evaluation of Biological Activities of Plant Preparations,” in Bioassay Methods in Natural Product Research and Drug Development, L. Bohlin and J. G. Bruhn, Eds., Dordrecht, Netherlands: Springer, 2014, pp. 37-52. ISBN 978-94-010-6019-6.
  • [33] N. Ulusoy Güzeldemirci, E. Pehlivan, Z. Halamoğlu, A. Kocabalkanlı, “Synthesis and antiviral activity evaluation of some new cyclohexylidenehydrazide derivatives of 1,3-thiazole core,” Marmara Pharm. J., vol. 20, pp. 207-215, Apr. 2016, doi: 10.12991/mpj.20162019913.
  • [34] A. M. De Palma, W. Heggermont, P. Leyssen, G. Pu, E. Wimmer et al., “Anti-enterovirus activity and structure-activity relationship of a series of 2,6-dihalophenyl-substituted 1H,3H-thiazolo[3,4-a]benzimidazoles,” Biochem. Biophys. Res. Commun., vol. 353, no. 3, pp. 628–632, Mar. 2007, doi: 10.1016/j.bbrc.2006.12.063.
  • [35] E. Vanderlinden, F. Goktas, Z. Cesur, M. Froeyen, M. L. Reed et al., “Novel Inhibitors of Influenza Virus Fusion: Structure-Activity Relationship and Interaction with the Viral Hemagglutinin,” J. Virol., vol. 84, no. 9, pp. 4277–4288, May 2010, doi: 10.1128/JVI.02325-09.
  • [36] J. C. Pritchett, L. Naesens, J. Montoya, “Treating HHV-6 Infections: The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents,” 3rd ed., Elsevier Inc., 2014.

Details

Primary Language English
Subjects Biology
Journal Section Research Articles
Authors

Mine ISAOGLU> (Primary Author)
ATATÜRK ÜNİVERSİTESİ
0000-0003-2326-1556
Türkiye


Nesrin CESUR>
İSTANBUL ÜNİVERSİTESİ
Türkiye

Supporting Institution İstanbul Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number 47045
Publication Date June 30, 2020
Published in Issue Year 2020, Volume 1, Issue 1

Cite

EndNote %0 Anatolian Journal of Biology Synthesis, Characterization and Antiviral Activities of Some Novel 4-Thiazolidinones Derived from Imidazo[2,1-b][1,3]thiazole-5-carbohydrazide Hydrazones %A Mine Isaoglu , Nesrin Cesur %T Synthesis, Characterization and Antiviral Activities of Some Novel 4-Thiazolidinones Derived from Imidazo[2,1-b][1,3]thiazole-5-carbohydrazide Hydrazones %D 2020 %J Anatolian Journal of Biology %P 2687-444X- %V 1 %N 1 %R %U