Research Article
PDF EndNote BibTex RIS Cite

Year 2020, Volume 1, Issue 1, 8 - 11, 30.06.2020

Abstract

References

  • [1] S.I. Abdelrahim, A.Z. Almagboul, M.E. Omer, A. Elegami, “Antimicrobial activity of Psidium guajava L.” Fitoterapia, vol. 73, pp. 713-715, 2002.
  • [2] T. Santhoshkumar, A.A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A.V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan, S. Kim, “Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties,” Asian Pac J Trop Med, pp. 968-976, 2014.
  • [3] A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar, A.A. Nohi, “Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach,” Process Biochem., vol. 42, pp. 919-923, 2007.
  • [4] A. Chatterjee, M. Ajantha, A. Talekar, N. Revathy, J. Abraham, “Biosynthesis, Antimicrobial and Cytotoxic Effects of Titanium Dioxide Nanoparticles Using Vigna unguiculata Seeds.” Int. J. Pharmacognosy and Phytochem. Res., vol. 9, pp. 95-99, 2017.
  • [5] P.P.N.V. Kumar, S.V.N. Pammi, P. Kollu, “Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antimicrobial activity.” Ind Crops Prod., vol. 52, pp. 562-566, 2014.
  • [6] S.K. Chaudhuri, L. Malodia, “Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage.” Appl Nanosci., vol. 7, pp. 501-512, 2017.
  • [7] S. Monticone, R. Tufeu, A.V. Kanaev, E. Scolan, C. Sanchez, “Quantum size effect in TiO2 nanoparticles: does it exist?” Appl. Surf. Sci., vol. 162, pp. 565-570, 2000.
  • [8] S. Boujday, F. Wunsch, P. Portes, J.F. Bocquet, C.C. Justin, “Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercitical drying.” Sol. Energy Mater. Sol. Cells, vol. 83, pp. 421-433, 2004.
  • [9] O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium oxide.” Prog. Solid State Chem., vol. 32, pp. 33-177, 2004.
  • [10] A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, “Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors.” Sens. Actuators B: Chem., vol. 103, pp. 312-317, 2004.
  • [11] M. Sundrarajan, S. Gowri, “Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract.” Chalcogenide Lett., vol. 8, pp. 447-451, 2011.
  • [12] L.C. Gerhardt, G.M.R. Jell, A.R Boccaccini, “Titanium dioxide (TiO2) nanoparticles filled poly(D, L lactic acid) (PDLLA) matrixcomposites for bone tissue engineering.” J Mater Sci Mater Med, vol. 18, pp. 1287-1298, 2007.
  • [13] A.K. Jha, K. Prasad, A.R. Kulkarni, “Synthesis of TiO2 nanoparticles using microorganisms.” Colloids Surf B Biointerfaces, vol. 71, pp. 226-229, 2009.
  • [14] C. Malarkodi, K. Chitra, S. Rajeshkumar, G. Gnanajobitha, K. Paulkumar, M. Vanaja, G. Annadurai, “Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation.” Der Pharmacia Sinica, vol. 4, pp. 59-66, 2013.
  • [15] V. Parashar, R. Parashar, B. Sharma, A.C. Pandey, “Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization.” Dig J Nanomater Biostruct., vol. 4, pp. 45-50, 2009.
  • [16] B. Xavier, A. Ramanand, P. Sagayaraj, “Investigation on a facile one-pot synthesis approach for developing modestly monodispersed and stable spherical gold nanoparticles.” Der Pharma Chem., vol. 4, pp. 1467-1470, 2012.
  • [17] G. Rajakumar, A.A. Rahuman, S.M. Roopan, V.G. Khanna, G. Elango, C. Kamaraj, A.A. Zahir, K. Velayutham, “Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria.” Spectrochim Acta A Mol Biomol Spectrosc, vol. 91, pp. 23-29, 2012.
  • [18] N. Tripathy, T. Hong, K. Ha, H. Jeong, Y. Hahn, “Effect of ZnO nanoparticles aggregation on the toxicity in RAW 264.7 murine macrophage.” J. Hazard. Mater., vol. 270, pp. 110-117, 2014.
  • [19] N. Durán, P.D. Marcato, O.L. Alves, G.D. Souza, E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains.” J Nanobiotechnology., vol. 3, pp. 1-7, 2005.
  • [20] A.V. Kirthi, A.A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A.A. Zahir, C. Kamaraj, A. Bagavan, “Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis.” Mater Lett., vol. 65, pp. 2745-2747, 2011.
  • [21] V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad, M. Sastry, “Fungus-mediated biosynthesis of silica and titania particles.” J. Mater. Chem., vol. 15, 2583-2589, 2005.

Extracellular biosynthesis and characterization of titanium dioxide nanoparticles (TiO2) by using Aspergillus sp. TK4

Year 2020, Volume 1, Issue 1, 8 - 11, 30.06.2020

Abstract

The broad applications of titanium dioxide (TiO2) in various fields have drawn attention for the synthesis of TiO2 nanoparticles. In line with this requirement, there are various studies on the synthesis of TiO2 nanoparticles. Many chemical and physical methods have been applied to prepare nanoparticles, but synthesis methods utilizing biological materials (e.g., bacteria, fungi, enzymes, and plant extracts) can be considered as eco-friendly alternatives when compared to chemical and physical techniques. The present study was designated to biotechnologically synthesize TiO2 nanoparticles from titanium(IV) oxide by Aspergillus sp. TK4. TiO2 nanoparticles were successfully synthesized extracellularly from the precursor and characterized by using SEM and EDX techniques. According to the results of SEM and EDX, the nanoparticles obtained are generally distributed between 50-100 nanometers and are composed of titanium and oxygen elements. Besides, it has been observed that the dimensions of some formations can reach 200 nanometers. In conclusion, taking into account the industrial uses as well as the uses in medical fields, the production of TiO2 nanoparticles with biotechnological means using natural sources is a more advantageous option. Moreover, the results of this study contribute to the development of new biological methods that can be used in the synthesis of TiO2 nanoparticles.

References

  • [1] S.I. Abdelrahim, A.Z. Almagboul, M.E. Omer, A. Elegami, “Antimicrobial activity of Psidium guajava L.” Fitoterapia, vol. 73, pp. 713-715, 2002.
  • [2] T. Santhoshkumar, A.A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A.V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan, S. Kim, “Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties,” Asian Pac J Trop Med, pp. 968-976, 2014.
  • [3] A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar, A.A. Nohi, “Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach,” Process Biochem., vol. 42, pp. 919-923, 2007.
  • [4] A. Chatterjee, M. Ajantha, A. Talekar, N. Revathy, J. Abraham, “Biosynthesis, Antimicrobial and Cytotoxic Effects of Titanium Dioxide Nanoparticles Using Vigna unguiculata Seeds.” Int. J. Pharmacognosy and Phytochem. Res., vol. 9, pp. 95-99, 2017.
  • [5] P.P.N.V. Kumar, S.V.N. Pammi, P. Kollu, “Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antimicrobial activity.” Ind Crops Prod., vol. 52, pp. 562-566, 2014.
  • [6] S.K. Chaudhuri, L. Malodia, “Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage.” Appl Nanosci., vol. 7, pp. 501-512, 2017.
  • [7] S. Monticone, R. Tufeu, A.V. Kanaev, E. Scolan, C. Sanchez, “Quantum size effect in TiO2 nanoparticles: does it exist?” Appl. Surf. Sci., vol. 162, pp. 565-570, 2000.
  • [8] S. Boujday, F. Wunsch, P. Portes, J.F. Bocquet, C.C. Justin, “Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercitical drying.” Sol. Energy Mater. Sol. Cells, vol. 83, pp. 421-433, 2004.
  • [9] O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium oxide.” Prog. Solid State Chem., vol. 32, pp. 33-177, 2004.
  • [10] A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, “Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors.” Sens. Actuators B: Chem., vol. 103, pp. 312-317, 2004.
  • [11] M. Sundrarajan, S. Gowri, “Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract.” Chalcogenide Lett., vol. 8, pp. 447-451, 2011.
  • [12] L.C. Gerhardt, G.M.R. Jell, A.R Boccaccini, “Titanium dioxide (TiO2) nanoparticles filled poly(D, L lactic acid) (PDLLA) matrixcomposites for bone tissue engineering.” J Mater Sci Mater Med, vol. 18, pp. 1287-1298, 2007.
  • [13] A.K. Jha, K. Prasad, A.R. Kulkarni, “Synthesis of TiO2 nanoparticles using microorganisms.” Colloids Surf B Biointerfaces, vol. 71, pp. 226-229, 2009.
  • [14] C. Malarkodi, K. Chitra, S. Rajeshkumar, G. Gnanajobitha, K. Paulkumar, M. Vanaja, G. Annadurai, “Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation.” Der Pharmacia Sinica, vol. 4, pp. 59-66, 2013.
  • [15] V. Parashar, R. Parashar, B. Sharma, A.C. Pandey, “Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization.” Dig J Nanomater Biostruct., vol. 4, pp. 45-50, 2009.
  • [16] B. Xavier, A. Ramanand, P. Sagayaraj, “Investigation on a facile one-pot synthesis approach for developing modestly monodispersed and stable spherical gold nanoparticles.” Der Pharma Chem., vol. 4, pp. 1467-1470, 2012.
  • [17] G. Rajakumar, A.A. Rahuman, S.M. Roopan, V.G. Khanna, G. Elango, C. Kamaraj, A.A. Zahir, K. Velayutham, “Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria.” Spectrochim Acta A Mol Biomol Spectrosc, vol. 91, pp. 23-29, 2012.
  • [18] N. Tripathy, T. Hong, K. Ha, H. Jeong, Y. Hahn, “Effect of ZnO nanoparticles aggregation on the toxicity in RAW 264.7 murine macrophage.” J. Hazard. Mater., vol. 270, pp. 110-117, 2014.
  • [19] N. Durán, P.D. Marcato, O.L. Alves, G.D. Souza, E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains.” J Nanobiotechnology., vol. 3, pp. 1-7, 2005.
  • [20] A.V. Kirthi, A.A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A.A. Zahir, C. Kamaraj, A. Bagavan, “Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis.” Mater Lett., vol. 65, pp. 2745-2747, 2011.
  • [21] V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad, M. Sastry, “Fungus-mediated biosynthesis of silica and titania particles.” J. Mater. Chem., vol. 15, 2583-2589, 2005.

Details

Primary Language English
Subjects Biology
Journal Section Research Articles
Authors

Mesut ŞAHİN This is me
ATATÜRK ÜNİVERSİTESİ
Türkiye


Abdussamed Yasin DEMİR> (Primary Author)
Erzincan Binali Yıldırım Üniversitesi
0000-0002-0420-5017
Türkiye


Taha Yasin KOÇ>
ATATÜRK ÜNİVERSİTESİ
0000-0002-7786-5462
Türkiye


Medine GÜLLÜCE>
ATATÜRK ÜNİVERSİTESİ
Türkiye

Publication Date June 30, 2020
Published in Issue Year 2020, Volume 1, Issue 1

Cite

EndNote %0 Anatolian Journal of Biology Extracellular biosynthesis and characterization of titanium dioxide nanoparticles (TiO2) by using Aspergillus sp. TK4 %A Mesut Şahin , Abdussamed Yasin Demir , Taha Yasin Koç , Medine Güllüce %T Extracellular biosynthesis and characterization of titanium dioxide nanoparticles (TiO2) by using Aspergillus sp. TK4 %D 2020 %J Anatolian Journal of Biology %P 2687-444X- %V 1 %N 1 %R %U