Research Article
PDF EndNote BibTex Cite

Year 2022, Volume 3, Issue 1, 25 - 27, 30.06.2022

Abstract

References

  • [1] J. Jabłońska, K. Dubrowska, A. Augustyniak, R. J. Wróbel, M. Piz, K. Cendrowski, R. Rakoczy, “The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa”, Appl. Nanosci., vol. 12, pp. 1929-1940, 2022.
  • [2] G. W. Lau, D. J. Hassett, H. Ran, F. Kong, “The role of pyocyanin in Pseudomonas aeruginosa infection”, Trends Mol. Med0, vol. 10, pp.599-606, 2004.
  • [3] L. E. Dietrich, A. Price‐Whelan, A. Petersen, M. Whiteley, D. K. Newman, “The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa”, Mol. Microbiol., vol. 61, pp. 1308-1321, 2006.
  • [4] S. Jayaseelan, D. Ramaswamy, S. Dharmaraj, "Pyocyanin: production, applications, challenges and new insights", World J. Microbiol. Biotechnol., vol. 30, pp. 1159-1168, 2014.
  • [5] M. N. Hamad, D. A. Marrez, S. M. El-Sherbieny, “Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa”, Biointerface Res. Appl. Chem., vol. 10, pp. 6974-6990, 2020.
  • [6] M. Gahlout, P. B. Chauhan, H. Prajapati, N. Tandel, S. Rana, D. Solanki, N. Patel, Characterization, application and statistical optimization approach for enhanced production of pyocyanin pigment by Pseudomonas aeruginosa DN9”, Syst. Appl. Biomanufact., vol. 1, pp. 459-470, 2021.
  • [7] S. Sengupta, J. Bhowal,"Study on the Antioxidant and Cytotoxic Properties of Pyocyanin Extracted from Pseudomonas aeruginosa". in Advances in Bioprocess Engineering and Technology . Lecture Notes in Bioengineering, D. Ramkrishna, S. Sengupta, S. Dey Bandyopadhyay, A. Ghosh, Ed. Singapore, Springer, 2021, pp. 133-141.
  • [8] M. Ozdal, S. Gurkok, O. G. Ozdal, E. B. Kurbanoglu, “Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector”, Biocatal. Agric. Biotechnol., vol. 22, pp. 101365, 2019.
  • [9] M. Ozdal, “A new strategy for the efficient production of pyocyanin, a versatile pigment, in Pseudomonas aeruginosa OG1 via toluene addition”, 3 Biotech, vol. 9, pp. 1-8, 2019.
  • [10] M. Ozdal, O. G. Ozdal, O. F. Algur, "Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches", Pol. J. Microbiol., vol. 65, pp. 63-68, 2016.
  • [11] M. Ozdal, S. Gurkok, O. G.Ozdal, "Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone" 3 Biotech, vol. 7(2), pp. 1-8, 2017.
  • [12] D. W. Essar, L. E. E. Eberly, A. Hadero, I. P. Crawford, “Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications”, J. Bacteriol., vol. 172, pp. 884-900, 1990.
  • [13] E. B. Kurbanoglu, M. Ozdal, O. G. Ozdal, O. F. Algur, “Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone” Braz. J. Microbiol., vol 46, pp.631-637 2015
  • [14] S. Patil, M. Nikam, H. Patil, T. Anokhina, V. Kochetkov, A. Chaudhari, “Bioactive pigment production by Pseudomonas spp. MCC 3145: Statistical media optimization, biochemical characterization, fungicidal and DNA intercalation-based cytostatic activity”, Process Biochem., vol. 58, pp. 298-305, 2017.
  • [15] M. Z. El-Fouly, A. M. Sharaf, A. A. M. Shahin, H. A. El-Bialy, A. M. A. Omara, “Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa”, J. Radiat. Res. Appl. Sci., vol. 8, pp. 36-48, 2015.
  • [16] G. A. Abo-Zaid, E. E. Wagih, S. M. Matar, N. A. Ashmawy, E. E. Hafez, “Optimization of pyocyanin production from Pseudomonas aeruginosa JY21 using statistical experimental designs”, Int. J. Chemtech Res., vol. 8, pp. 137-148, 2015.

Effect of toluene addition on pyocyanin production in the presence of different carbon sources

Year 2022, Volume 3, Issue 1, 25 - 27, 30.06.2022

Abstract

Pseudomonas aeruginosa is a Gram-negative, opportunistic bacterium and is one of the most biotechnologically important microorganisms. P. aeruginosa secretes an extracellular secondary metabolite known as pyocyanin, which is highly functional. In this study, the effects of toluene on pyocyanin production in different carbon sources in submerged culture of P. aeruginosa OG1 were investigated. It was determined that the addition of toluene to all carbon sources increased the production of pyocyanin. Maximum pyocyanin production was achieved when glycerol was used as the sole carbon source. With the addition of toluene, pyocyanin production generally increased, but bacterial biomass decreased. In addition, when glucose was used as the carbon source, the final pH decreased more than the other carbon sources. This study revealed that the addition of toluene to the fermentation medium significantly increased the production of pyocyanin in the presence of different carbon sources. These findings support that the solvent assisted fermentation strategy can be used in microbial fermentations to increase the production of industrially important biotechnological products such as pigments.

References

  • [1] J. Jabłońska, K. Dubrowska, A. Augustyniak, R. J. Wróbel, M. Piz, K. Cendrowski, R. Rakoczy, “The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa”, Appl. Nanosci., vol. 12, pp. 1929-1940, 2022.
  • [2] G. W. Lau, D. J. Hassett, H. Ran, F. Kong, “The role of pyocyanin in Pseudomonas aeruginosa infection”, Trends Mol. Med0, vol. 10, pp.599-606, 2004.
  • [3] L. E. Dietrich, A. Price‐Whelan, A. Petersen, M. Whiteley, D. K. Newman, “The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa”, Mol. Microbiol., vol. 61, pp. 1308-1321, 2006.
  • [4] S. Jayaseelan, D. Ramaswamy, S. Dharmaraj, "Pyocyanin: production, applications, challenges and new insights", World J. Microbiol. Biotechnol., vol. 30, pp. 1159-1168, 2014.
  • [5] M. N. Hamad, D. A. Marrez, S. M. El-Sherbieny, “Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa”, Biointerface Res. Appl. Chem., vol. 10, pp. 6974-6990, 2020.
  • [6] M. Gahlout, P. B. Chauhan, H. Prajapati, N. Tandel, S. Rana, D. Solanki, N. Patel, Characterization, application and statistical optimization approach for enhanced production of pyocyanin pigment by Pseudomonas aeruginosa DN9”, Syst. Appl. Biomanufact., vol. 1, pp. 459-470, 2021.
  • [7] S. Sengupta, J. Bhowal,"Study on the Antioxidant and Cytotoxic Properties of Pyocyanin Extracted from Pseudomonas aeruginosa". in Advances in Bioprocess Engineering and Technology . Lecture Notes in Bioengineering, D. Ramkrishna, S. Sengupta, S. Dey Bandyopadhyay, A. Ghosh, Ed. Singapore, Springer, 2021, pp. 133-141.
  • [8] M. Ozdal, S. Gurkok, O. G. Ozdal, E. B. Kurbanoglu, “Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector”, Biocatal. Agric. Biotechnol., vol. 22, pp. 101365, 2019.
  • [9] M. Ozdal, “A new strategy for the efficient production of pyocyanin, a versatile pigment, in Pseudomonas aeruginosa OG1 via toluene addition”, 3 Biotech, vol. 9, pp. 1-8, 2019.
  • [10] M. Ozdal, O. G. Ozdal, O. F. Algur, "Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches", Pol. J. Microbiol., vol. 65, pp. 63-68, 2016.
  • [11] M. Ozdal, S. Gurkok, O. G.Ozdal, "Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone" 3 Biotech, vol. 7(2), pp. 1-8, 2017.
  • [12] D. W. Essar, L. E. E. Eberly, A. Hadero, I. P. Crawford, “Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications”, J. Bacteriol., vol. 172, pp. 884-900, 1990.
  • [13] E. B. Kurbanoglu, M. Ozdal, O. G. Ozdal, O. F. Algur, “Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone” Braz. J. Microbiol., vol 46, pp.631-637 2015
  • [14] S. Patil, M. Nikam, H. Patil, T. Anokhina, V. Kochetkov, A. Chaudhari, “Bioactive pigment production by Pseudomonas spp. MCC 3145: Statistical media optimization, biochemical characterization, fungicidal and DNA intercalation-based cytostatic activity”, Process Biochem., vol. 58, pp. 298-305, 2017.
  • [15] M. Z. El-Fouly, A. M. Sharaf, A. A. M. Shahin, H. A. El-Bialy, A. M. A. Omara, “Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa”, J. Radiat. Res. Appl. Sci., vol. 8, pp. 36-48, 2015.
  • [16] G. A. Abo-Zaid, E. E. Wagih, S. M. Matar, N. A. Ashmawy, E. E. Hafez, “Optimization of pyocyanin production from Pseudomonas aeruginosa JY21 using statistical experimental designs”, Int. J. Chemtech Res., vol. 8, pp. 137-148, 2015.

Details

Primary Language English
Subjects Biology
Journal Section Research Articles
Authors

Sümeyra GÜRKÖK>
ATATURK UNIVERSITY
0000-0002-2707-4371
Türkiye


Murat ÖZDAL> (Primary Author)
ATATURK UNIVERSITY
0000-0001-8800-1128
Türkiye

Publication Date June 30, 2022
Published in Issue Year 2022, Volume 3, Issue 1

Cite

EndNote %0 Anatolian Journal of Biology Effect of toluene addition on pyocyanin production in the presence of different carbon sources %A Sümeyra Gürkök , Murat Özdal %T Effect of toluene addition on pyocyanin production in the presence of different carbon sources %D 2022 %J Anatolian Journal of Biology %P 2687-444X- %V 3 %N 1 %R %U