Year 2024,
, 207 - 234, 31.12.2024
İrem Özgün
,
Elif Işıkçı Koca
,
Hansi Scharfen
,
Eda Özbilgen
,
Deniz Yerlikaya
,
Adil Deniz Duru
References
- Aubert, A., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889–919.
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5(FEB), 1–19. https://doi.org/10.3389/fphys.2014.00073
- Da Silva, V. P., De Oliveira, N. A., Silveira, H., Mello, R. G. T., & Deslandes, A. C. (2014). Heart rate variability indexes as a marker of chronic adaptation in athletes: A systematic review. Annals of Noninvasive Electrocardiology, 20(2), 108–118. https://doi.org/10.1111/anec.12237
- Durantin, G., Gagnon, J. F., Tremblay, S., & Dehais, F. (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research, 259, 16–23.
https://doi.org/10.1016/j.bbr.2013.10.042
- Forte, G., Favieri, F., & Casagrande, M. (2019). Heart rate variability and cognitive function: A systematic review. Frontiers in Neuroscience, 13, 710. https://doi.org/10.3389/fnins.2019.00710
- Fuentes-García, J. P., Villafaina, S., Collado-Mateo, D., de la Vega, R., Olivares, P. R., & Clemente-Suárez, V. J. (2019). Differences between high vs. low performance chess players in heart rate variability during chess problems. Frontiers in Psychology, 10(FEB), 1–9. https://doi.org/10.3389/fpsyg.2019.00409
- Hilgarter, K., Schmid-Zalaudek, K., Csana´dy-Leitner, R., Mörtl, M., Rössler, A., & Lackner, H. K. (2021). Phasic heart rate variability and the association with cognitive performance: A cross-sectional study in a healthy population setting. PLOS ONE, 16(3), e0246968. https://doi.org/10.1371/journal.pone.0246968
- Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213
- Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Frontiers in Psychology, 9, 509. https://doi.org/10.3389/fpsyg.2018.00509
- Muthukrishnan, S. P., Gurja, J. P., & Sharma, R. (2017). Does heart rate variability predict human cognitive performance at higher memory loads? Indian Journal of Physiology and Pharmacology, 61(1), 14–22.
- Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., & Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22, 183–198.
- Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
- Walton, C. C., Keegan, R. J., Martin, M., & Hallock, H. (2018). The potential role for cognitive training in sport: More research needed. Frontiers in Psychology, 9, 387690.
- Wang, J. (2012). Research on application of virtual reality technology in competitive sports. Procedia Engineering, 29, 3659–3662.
HEART RATE VARIABILITY IN ATHLETES DURING A VIRTUAL REALITY-BASED WORKING MEMORY EXPERIENCE
Year 2024,
, 207 - 234, 31.12.2024
İrem Özgün
,
Elif Işıkçı Koca
,
Hansi Scharfen
,
Eda Özbilgen
,
Deniz Yerlikaya
,
Adil Deniz Duru
Abstract
The study explores the link between cognitive performance and heart rate variability (HRV) using a virtual reality (VR) cognitive assessment system by Neo Auvra® Digital Health and Bionics Technologies Inc. All participants underwent varying levels of mental workload in the VR environment, with metrics like Verbal Working Memory Capacity Item Number (VeWMCIN), Visuospatial Working Memory Capacity Item Number (ViWMCIN), Working Memory Efficiency Task Switching Speed (WMETSS), and Visual Attention Accuracy (VAA). Heart Rate Variability (HRV) data was collected during VR session from two groups: athletes and sedentary individuals. Multivariate analysis of variance (MANOVA) was employed. When analyzing the results of the study, it was concluded that HRV parameters did not differ significantly (according to p-value) or significantly (according to 95% Cis and effect sizes) between different levels (cognitive load), HRV parameters showed significant (according to p-value) and significant (according to 95% Cis and effect sizes) differences between different groups, while athletes had better values in all HRV parameters except HF%, LF%, IF%.
References
- Aubert, A., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889–919.
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5(FEB), 1–19. https://doi.org/10.3389/fphys.2014.00073
- Da Silva, V. P., De Oliveira, N. A., Silveira, H., Mello, R. G. T., & Deslandes, A. C. (2014). Heart rate variability indexes as a marker of chronic adaptation in athletes: A systematic review. Annals of Noninvasive Electrocardiology, 20(2), 108–118. https://doi.org/10.1111/anec.12237
- Durantin, G., Gagnon, J. F., Tremblay, S., & Dehais, F. (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research, 259, 16–23.
https://doi.org/10.1016/j.bbr.2013.10.042
- Forte, G., Favieri, F., & Casagrande, M. (2019). Heart rate variability and cognitive function: A systematic review. Frontiers in Neuroscience, 13, 710. https://doi.org/10.3389/fnins.2019.00710
- Fuentes-García, J. P., Villafaina, S., Collado-Mateo, D., de la Vega, R., Olivares, P. R., & Clemente-Suárez, V. J. (2019). Differences between high vs. low performance chess players in heart rate variability during chess problems. Frontiers in Psychology, 10(FEB), 1–9. https://doi.org/10.3389/fpsyg.2019.00409
- Hilgarter, K., Schmid-Zalaudek, K., Csana´dy-Leitner, R., Mörtl, M., Rössler, A., & Lackner, H. K. (2021). Phasic heart rate variability and the association with cognitive performance: A cross-sectional study in a healthy population setting. PLOS ONE, 16(3), e0246968. https://doi.org/10.1371/journal.pone.0246968
- Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213
- Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Frontiers in Psychology, 9, 509. https://doi.org/10.3389/fpsyg.2018.00509
- Muthukrishnan, S. P., Gurja, J. P., & Sharma, R. (2017). Does heart rate variability predict human cognitive performance at higher memory loads? Indian Journal of Physiology and Pharmacology, 61(1), 14–22.
- Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., & Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22, 183–198.
- Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
- Walton, C. C., Keegan, R. J., Martin, M., & Hallock, H. (2018). The potential role for cognitive training in sport: More research needed. Frontiers in Psychology, 9, 387690.
- Wang, J. (2012). Research on application of virtual reality technology in competitive sports. Procedia Engineering, 29, 3659–3662.