Research Article
BibTex RIS Cite

WEB BASED PROGRAM FOR BIG MOLECULAR DATA CONVERSION FOR ANALYSIS BY MATLAB, PHYTON OR R

Year 2018, Volume: 2 Issue: 1, 27 - 31, 01.07.2018

Abstract

Molecular data is created in different formats: MICROSAT, SNP, AFLP, RFLP, DNA, RNA, DISTANCE, PROTEIN, DART, INDEL, RAPID. File formats includes Arlequin, Genpop, Structure, Nexus, Mega, Fasta. Scientists working in this field needs to analyze this molecular data, and he/she does it by either writing special programs to convert these big data to the format he needs or sends his/her data to some centers for analysis. User friendly and easy to use web based molecular data converting program was deveopled using R programming language at Kafkas University Department of Bioengineering and Department of Computer Engineering. Users can upload their data using the Web based program selecting input and out file formats to convert their big molecular data to the format they want for analysis using either R, Phyton programming languages or MATLAB Wavelet Toolbox™

References

  • Artail, H.A., Al-Asadi, H., Koleilat, W. and Chehab, A. 2004. “Applications of a Spreadsheet-based Wavelet Analysis Toolbox in Education”. Int. J. Engeng. Ed. 20(6), 920-927.
  • Ballabio, D. 2015. “A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure.” Chemometrics and Intelligent Laboratory Systems 149,1–9.
  • Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, KM., and Robbins, K.A. 2015. “The PREP pipeline: standardized preprocessing for large-scale EEG analysis”. Frontiers in Neuroinformatics, 9: 16.
  • Bruce, A. and Gao, H.Y. 2016. “ Applied Wavelet Analysis with S-Plus Springer-Verlag New York, Inc. Secaucus, NJ, USA ©1996, ISBN:0387947140 http://dl.acm.org/citation. cfm?id=547924 accessed on July 15, 2016
  • Camacho, J., Perez-Villegas, A., Rodriguez-Gomez, R.A., and Jiménez-Mañas, E. 2015. “Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab”. Chemometrics and Intelligent Laboratory Systems, 143,49-57.
  • Dinc¸ E. and Baleanu, D. 2003. “Multidetermination of thiamine HCl and pyridoxine HCl in their mixture using continuous daubechies and biorthogonal wavelet analysis.” Talanta, 59(4), 707-717.
  • Lai, C.S. 2015. “ High Impedance Fault and Heavy Load under Big Data Context”, IEEE International Conference on Systems Man and Cybernetics Conference Proceedings, Pages: 653-658.
  • Manojbhai, D. D., Pradipkumar, K. K., and Rajamenakshi, R. 2016. “Big Image Analysis for Identifying Tumor Pattern Similarities”. Proceedings of 2016 International Conference on Advanced Communication Control and Computing Technologies(ICACCCT), Pages: 39-43.
  • Poojitha, V; Bhadauria, M., B., Shilpi, J., and Anchal Garg, A. 2016. “A collocation of IRIS Flower using Neural network Clustering tool in MATLAB.” 6th International Conference on Cloud System and Big Data Engineering, Pages: 53-58.
  • Rodrigues, A., Silva, C., Borges, P., Silva, S., and Dutra, I. 2015. “Performance Evaluation of Statistical Functions”, IEEE International Conference on Smart CityY/Socialcom/Sustaincom (Smartcity,) Pages: 754-760.
  • Rübel, O., Greiner, A., Cholia, S., Louie, K., Bethel, E.W., Northen, T.R. and Bowen, B.P. 2013. “ OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging”, Analytical Chemistry, 85(21), 10354-10361.
  • Sukiennik, P and Bialasiewicz, J.T. 2015. “Cross-correlation of bio-signals using continuous wavelet transform and genetic algorithm”. Journal of Neuroscience Methods, 247, 13-22.
  • Torrence, C and and Combo, G.P. 1998. “A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society” DOI: http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 Published Online: 1 January 1998 http://journals.ametsoc.org/doi/pdf/10.1175/1520-0477%281998%29079%3C0 061%3AAPGTWA%3E2.0.CO%3B2 accessed on July 15, 2016
  • Matlab Wavelet Toolbox Documentation. http://www.mathworks.com/help/wavelet/index.html;jsession id=da1c0f14d9f97badb7f882d5934b

MATLAB, PHYTON VEYA R KULLANARAK WEB TABANLI BÜYÜK MOLEKÜLER VERI DÖNÜŞÜM ANALIZI

Year 2018, Volume: 2 Issue: 1, 27 - 31, 01.07.2018

Abstract

Moleküler veriler farklı formatlarda oluşturulur: MICROSAT, SNP, AFLP, RFLP, DNA, RNA, MESAFANT, PROTEİN, DART, INDEL, HIZLI. Dosya biçimleri arasında Arlequin, Genpop, Structure, Nexus, Mega, Fasta bulunur. Bu alandaki bilim adamları bu moleküler veriyi analiz etmek ve bu büyük veriyi ihtiyaç duyduğu biçime dönüştürmek için özel programlar yazarak ya da verilerini analiz için bazı merkezlere göndererek yapar. Kullanıcı dostu ve kullanımı kolay web tabanlı moleküler veri dönüştürme programı, Kafkas Üniversitesi Biyomühendislik ve Bilgisayar Mühendisliği Bölümü’nde R programlama dili kullanılarak geliştirilmiştir. Kullanıcılar, giriş ve çıkış dosya formatlarını seçen Web tabanlı programı kullanarak veriler yükleyebilirler ve R programlama dili veya MATLAB Wavelet Toolbox kullanarak verilerini analiz edebilirler.

References

  • Artail, H.A., Al-Asadi, H., Koleilat, W. and Chehab, A. 2004. “Applications of a Spreadsheet-based Wavelet Analysis Toolbox in Education”. Int. J. Engeng. Ed. 20(6), 920-927.
  • Ballabio, D. 2015. “A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure.” Chemometrics and Intelligent Laboratory Systems 149,1–9.
  • Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, KM., and Robbins, K.A. 2015. “The PREP pipeline: standardized preprocessing for large-scale EEG analysis”. Frontiers in Neuroinformatics, 9: 16.
  • Bruce, A. and Gao, H.Y. 2016. “ Applied Wavelet Analysis with S-Plus Springer-Verlag New York, Inc. Secaucus, NJ, USA ©1996, ISBN:0387947140 http://dl.acm.org/citation. cfm?id=547924 accessed on July 15, 2016
  • Camacho, J., Perez-Villegas, A., Rodriguez-Gomez, R.A., and Jiménez-Mañas, E. 2015. “Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab”. Chemometrics and Intelligent Laboratory Systems, 143,49-57.
  • Dinc¸ E. and Baleanu, D. 2003. “Multidetermination of thiamine HCl and pyridoxine HCl in their mixture using continuous daubechies and biorthogonal wavelet analysis.” Talanta, 59(4), 707-717.
  • Lai, C.S. 2015. “ High Impedance Fault and Heavy Load under Big Data Context”, IEEE International Conference on Systems Man and Cybernetics Conference Proceedings, Pages: 653-658.
  • Manojbhai, D. D., Pradipkumar, K. K., and Rajamenakshi, R. 2016. “Big Image Analysis for Identifying Tumor Pattern Similarities”. Proceedings of 2016 International Conference on Advanced Communication Control and Computing Technologies(ICACCCT), Pages: 39-43.
  • Poojitha, V; Bhadauria, M., B., Shilpi, J., and Anchal Garg, A. 2016. “A collocation of IRIS Flower using Neural network Clustering tool in MATLAB.” 6th International Conference on Cloud System and Big Data Engineering, Pages: 53-58.
  • Rodrigues, A., Silva, C., Borges, P., Silva, S., and Dutra, I. 2015. “Performance Evaluation of Statistical Functions”, IEEE International Conference on Smart CityY/Socialcom/Sustaincom (Smartcity,) Pages: 754-760.
  • Rübel, O., Greiner, A., Cholia, S., Louie, K., Bethel, E.W., Northen, T.R. and Bowen, B.P. 2013. “ OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging”, Analytical Chemistry, 85(21), 10354-10361.
  • Sukiennik, P and Bialasiewicz, J.T. 2015. “Cross-correlation of bio-signals using continuous wavelet transform and genetic algorithm”. Journal of Neuroscience Methods, 247, 13-22.
  • Torrence, C and and Combo, G.P. 1998. “A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society” DOI: http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 Published Online: 1 January 1998 http://journals.ametsoc.org/doi/pdf/10.1175/1520-0477%281998%29079%3C0 061%3AAPGTWA%3E2.0.CO%3B2 accessed on July 15, 2016
  • Matlab Wavelet Toolbox Documentation. http://www.mathworks.com/help/wavelet/index.html;jsession id=da1c0f14d9f97badb7f882d5934b
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Halit Hami Oz

Mahmut Aydın This is me

Publication Date July 1, 2018
Submission Date June 30, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Oz, H. H., & Aydın, M. (2018). WEB BASED PROGRAM FOR BIG MOLECULAR DATA CONVERSION FOR ANALYSIS BY MATLAB, PHYTON OR R. AURUM Journal of Engineering Systems and Architecture, 2(1), 27-31.

.