Research Article
BibTex RIS Cite

ÇOKLU YÖNTEMLERLE YENİLENEBİLİR ENERJİNİN EKONOMİK DAĞITIM PROBLEMİ

Year 2018, Volume: 2 Issue: 2, 85 - 107, 01.02.2019

Abstract

Özet

Herhangi bir güç sisteminin başarılı bir şekilde tasarlanması ve çalıştırılması, büyük ölçüde ekonomik yük

tevzi(dağıtım) problemine bağlıdır, bu nedenle herhangi bir güç sistemi için önemli bir faktör olarak düşünülebilir.

Ekonomik yük tevzi(ELD) problemi, sistem sınırlaması altında istenen yükü en düşük maliyetle karşılarken,

en iyi nesil/jenerasyon düzeninin kısa süreli olarak belirlenmesidir. Genel olarak, ikinci derece fonksiyon

olarak belirtilen maliyet fonksiyonu, farklı yöntemler kullanılarak çözülmüştür. Geçtiğimiz on yıl boyunca, ekonomik

yük tevzi sorunlarını çözmek ve en iyi sonuçları elde etmek için, iki ana kategoriye ayrılan (sürü zekâsı

ve evrimsel) üst-sezgisel algoritmalar teknikleri gibi birçok yeni yöntem geliştirilmiştir. Bu çalışmada, yeni teknikler

olan planktonik tunikap (salp) sürü algoritması (SSA) ve çekirge optimizasyon algoritması (GOA) olmak

üzere iki (sürü zekası) optimizasyon teknikleri kullanılmıştır. Ekonomik Yük Tevzi (ELD) analitik yöntemi, farklı

nesil kombinasyon/düzen senaryoları için yenilenebilir enerji kaynaklarını (güneş ve rüzgar) göz önünde bulundurarak

bir mikro şebekeye uygulanan analitik yöntem ve optimizasyon tekniklerinin (SSA, GOA) basitleştirilmiş

versiyonudur. Sonuç olarak, aralarındaki mümkün olan en iyi sonucu göstermek için kullanılan yöntemler

arasında sunulan bir karşılaştırma, sonuca ek olarak, yenilenebilir enerjinin toplam üretim maliyetine

etkisini de gösterecektir. Önerilen yöntemler (analitik yöntem, analitik yöntemin sadeleştirilmiş versiyonu

ve salp sürüsü algoritması (SSA)) yaklaşık olarak ortalama toplam maliyet için aynı sonuçları (7292.64

$/h) ancak uygulama süresi analitik sadeleştirilmiş versiyonuyla daha iyi (0.373) ‘e dayanan yöntem, çekirge

optimizasyon algoritması (GOA) yaklaşık olarak (7292.94 $ /h) daha yüksek bir toplam maliyet göstermiştir.

References

  • A. G. Neve, G. M. Kakandikar, and O. Kulkarni. 2017. “Application of Grasshopper Optimization Algorithm for constrained and Unconstrained Test Function,” Int. J. Swarm Intel. Evol. Comput., doi:10.4172/2090- 4908.1000165
  • A. J. Wood and B. F. Wollenberg. 1996. Power generation, operation, and control. J. Wiley & Sons.
  • A. Kaur and S. Bhullar. 2011. “Analysis and Comparison of Economic Load Dispatch Using Genetic Algorithm and Particle Swarm Optimization,” Thapar Institute of Engineering & Technology Master Thesis, Punjab, India.
  • C. Natesan, S. Ajithan, S. K. Ajithan, P. Palani and P.Kandhasamy. 2014. “Survey on microgrid: Power quality improvement techniques,” downloads.hindawi.com, 2014.
  • E. U. and E. U. Turkenburg, W. C., D. J. Arent, R. Bertani, A. Faaij, M. Hand, W. Krewitt,
  • E. D. Larson, J. Lund, M. Mehos, T. Merrigan, C. Mitchell, J. R. Moreira, W. Sinke, V. Sonntag-O’Brien, B. Thresher, W. van Sark. 2012. Chapter 11: Renewable Energy - Chapter 11 - IIASA.
  • F. N. Al Farsi, M. H. Albadi, N. Hosseinzadeh, and A. H. Al Badi. 2015.“Economic Dispatch in power systems,” in 2015 IEEE 8th GCC Conference & Exhibition, pp. 1–6.
  • H. Saadat. 1999. Power System Analysis McGraw-Hill Series in Electrical Computer Engineering. Mcgraw-Hill College, ISBN-13: 978-0070122352 “Home - Energy Explained, Your Guide To Understanding Energy - Energy Information Administration.” [Online]. Available: https://www.eia.gov/energyexplained/. [Accessed: 05-Dec-2018].
  • M. Meiqin, J. Meihong, D. Wei, and L. Chang. 2010. “Multi-objective economic dispatch model for a microgrid considering reliability,” in The 2nd International Symposium on Power Electronics for Distributed Generation Systems, pp. 993–998.
  • N. Augustine, S. Suresh, P. Moghe, and K. Sheikh. 2012. “Economic dispatch for a microgrid considering renewable energy cost functions,” in 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–7.
  • N. Rajput, V. Chaudhary, H. M. Dubey, M. Pandit. 2017. “Optimal generation scheduling of thermal System using biologically inspired grasshopper algorithm,” in 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 2017, pp. 1–6.
  • P. A. V. Anderson and Q. Bone. 1980. “Communication between Individuals in Salp Chains II. Physiology,” Proc. R. Soc. B Biol. Sci., vol. 210, no. 1181, pp. 559–574, Nov.
  • R. H. Lasseter, P. Paigi. 2004. “Microgrid: a conceptual solution,” in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), pp. 4285–4290.
  • R. Ramanathan. 1985. “Fast Economic Dispatch Based on the Penalty Factors From Newton’s Method,” IEEE Trans. Power Appar. Syst., vol. PAS-104, no. 7, pp. 1624–1629.
  • S.-J. Ahn and S.-I. Moon. “Economic scheduling of distributed generators in a microgrid considering various constraints,” in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1–6.
  • S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili. 2017. “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163–191.
  • S. Mirjalili, S. M. Mirjalili, and A. Lewis. 2014. “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61
  • S. Saremi, S. Mirjalili, and A. Lewis. 2017. “Grasshopper Optimisation Algorithm: Theory and application,” Adv. Eng. Softw., vol. 105, pp. 30–47.
  • S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah. 2018. “Grasshopper optimization algorithm for multi-objective optimization problems,” Appl. Intell., vol. 48, no. 4, pp. 805– 820.
  • Y.-H. Chen, S.-Y. Lu, Y.-R. Chang, T.-T. Lee, and M.-C. Hu. “Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan,” Appl. Energy, vol. 103, pp. 145–154, Mar. 2013.

ECONOMIC DISPATCH PROBLEM INCLUDING RENEWABLE ENERGY USING MULTIPLE METHODS

Year 2018, Volume: 2 Issue: 2, 85 - 107, 01.02.2019

Abstract

Abstract
The successful design and operation of any power system is highly dependent on the economic load dispatch
problem, therefore it can be considered as a major factor for any power system. Economic load dispatch
(ELD) problem is the short-term determination of the best combination of generation while satisfying
the demanded load with minimum cost under the system constrains. Generally, the cost function presented
as quadratic function and solved by using different methods. For the past ten years, in order to solve (ELD)
problems and to get the best possible results, many new methods have been developed such as meta-heuristic
algorithms which are classified into two major classes (swarm intelligence and evolutionary) techniques.
In this paper, two (swarm intelligence) optimization techniques are used, namely salp swarm algorithm (SSA)
and grasshopper optimization algorithm (GOA) which are relatively new techniques. The (ELD) analytical
method, simplified version of the analytical method and optimization techniques (SSA, GOA) applied to a
microgrid considering the renewable energy sources (solar and wind) for different generation combination
scenarios. At last, a comparison presented between the used methods in order to show the best result possible
between them, in addition the result will show the effect of the renewable energy on the total generation
cost. The proposed methods (analytical method, the simplified version of the analytical method and the salp
swarm algorithm (SSA)) the same results for total average cost approximately (7292.64 $/h) but the execution
time was better with the simplified version of the analytical method with time of (0.373 seconds), while the
grasshopper optimization algorithm (GOA) showed a higher total cost average approximately (7292.94 $/h).

References

  • A. G. Neve, G. M. Kakandikar, and O. Kulkarni. 2017. “Application of Grasshopper Optimization Algorithm for constrained and Unconstrained Test Function,” Int. J. Swarm Intel. Evol. Comput., doi:10.4172/2090- 4908.1000165
  • A. J. Wood and B. F. Wollenberg. 1996. Power generation, operation, and control. J. Wiley & Sons.
  • A. Kaur and S. Bhullar. 2011. “Analysis and Comparison of Economic Load Dispatch Using Genetic Algorithm and Particle Swarm Optimization,” Thapar Institute of Engineering & Technology Master Thesis, Punjab, India.
  • C. Natesan, S. Ajithan, S. K. Ajithan, P. Palani and P.Kandhasamy. 2014. “Survey on microgrid: Power quality improvement techniques,” downloads.hindawi.com, 2014.
  • E. U. and E. U. Turkenburg, W. C., D. J. Arent, R. Bertani, A. Faaij, M. Hand, W. Krewitt,
  • E. D. Larson, J. Lund, M. Mehos, T. Merrigan, C. Mitchell, J. R. Moreira, W. Sinke, V. Sonntag-O’Brien, B. Thresher, W. van Sark. 2012. Chapter 11: Renewable Energy - Chapter 11 - IIASA.
  • F. N. Al Farsi, M. H. Albadi, N. Hosseinzadeh, and A. H. Al Badi. 2015.“Economic Dispatch in power systems,” in 2015 IEEE 8th GCC Conference & Exhibition, pp. 1–6.
  • H. Saadat. 1999. Power System Analysis McGraw-Hill Series in Electrical Computer Engineering. Mcgraw-Hill College, ISBN-13: 978-0070122352 “Home - Energy Explained, Your Guide To Understanding Energy - Energy Information Administration.” [Online]. Available: https://www.eia.gov/energyexplained/. [Accessed: 05-Dec-2018].
  • M. Meiqin, J. Meihong, D. Wei, and L. Chang. 2010. “Multi-objective economic dispatch model for a microgrid considering reliability,” in The 2nd International Symposium on Power Electronics for Distributed Generation Systems, pp. 993–998.
  • N. Augustine, S. Suresh, P. Moghe, and K. Sheikh. 2012. “Economic dispatch for a microgrid considering renewable energy cost functions,” in 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–7.
  • N. Rajput, V. Chaudhary, H. M. Dubey, M. Pandit. 2017. “Optimal generation scheduling of thermal System using biologically inspired grasshopper algorithm,” in 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 2017, pp. 1–6.
  • P. A. V. Anderson and Q. Bone. 1980. “Communication between Individuals in Salp Chains II. Physiology,” Proc. R. Soc. B Biol. Sci., vol. 210, no. 1181, pp. 559–574, Nov.
  • R. H. Lasseter, P. Paigi. 2004. “Microgrid: a conceptual solution,” in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), pp. 4285–4290.
  • R. Ramanathan. 1985. “Fast Economic Dispatch Based on the Penalty Factors From Newton’s Method,” IEEE Trans. Power Appar. Syst., vol. PAS-104, no. 7, pp. 1624–1629.
  • S.-J. Ahn and S.-I. Moon. “Economic scheduling of distributed generators in a microgrid considering various constraints,” in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1–6.
  • S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili. 2017. “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163–191.
  • S. Mirjalili, S. M. Mirjalili, and A. Lewis. 2014. “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61
  • S. Saremi, S. Mirjalili, and A. Lewis. 2017. “Grasshopper Optimisation Algorithm: Theory and application,” Adv. Eng. Softw., vol. 105, pp. 30–47.
  • S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah. 2018. “Grasshopper optimization algorithm for multi-objective optimization problems,” Appl. Intell., vol. 48, no. 4, pp. 805– 820.
  • Y.-H. Chen, S.-Y. Lu, Y.-R. Chang, T.-T. Lee, and M.-C. Hu. “Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan,” Appl. Energy, vol. 103, pp. 145–154, Mar. 2013.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Almuatasim M. Alfarras

Osman Nuri Uçan 0000-0002-4100-0045

Oğuz Bayat This is me 0000-0001-5988-8882

Publication Date February 1, 2019
Submission Date December 21, 2018
Acceptance Date February 5, 2019
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Alfarras, A. M., Uçan, O. N., & Bayat, O. (2019). ECONOMIC DISPATCH PROBLEM INCLUDING RENEWABLE ENERGY USING MULTIPLE METHODS. AURUM Journal of Engineering Systems and Architecture, 2(2), 85-107.

.