Research Article
BibTex RIS Cite

Üçgen Optik Örgüde Kuantum Spin Hall Etkisi için Sıkı-Bağ Modeli

Year 2019, Volume: 3 Issue: 1, 23 - 33, 30.07.2019

Abstract

Öz

Bu makelede, üçgen örgü üzerinde kuantum spin Hall sistemi için bir sıkı-bağ modeli önermekte ve Z2

topolojik yalıtkanının ayırt edici özelliği olan boşluk geçiş durumlarını da içeren kenar durum spektrumunu

incelemekteyiz. Bu sistemin avantajı, serbest elektron sınırı B. Beri ve N. R. Cooper tarafından verilen (Phys.

Rev. Lett. 107, 145301, 2011) fermiyonik aşırı soğuk atomik sistemlerde de incelenme imkanının olmasıdır.

References

  • Ashcroft N. W. and N. D. Mermin. 1976. “Solid State Physics”, Thomson Learning, Toronto.
  • Beri B. and N. R. Cooper. 2011. “Z2 Topological Insulators in Ultracold Atomic Gases”, Phys. Rev. Lett., 107, 145301.
  • Bernevig B. A. and S.-C. Zhang. 2006. “Quantum Spin Hall Effect”, Phys. Rev. lett., 96, 106802.
  • Cohen-Tannoudji C., J. Dupont-Roc, and G. Grynberg, 1992. “Atom-Photon Interactions”, Wiley, New York.
  • Cooper N. 2011. “Optical Flux Lattices for Ultracold Atomic Gases”, Phys. Rev. lett., 106, 175301 2.
  • Dalibard J., F. Gerbier, G. Juzeliūnas, and P. Öhberg. 2011. “Artificial gauge potentials for neutral atoms” Rev.Mod., Phys. 83, 1523.
  • Fu L. and C. L. Kane. 2006. “Time reversal polarization and a Z2 adiabatic spin pump”, Phys. Rev. B, 74, 195312.
  • Gerbier F. and J. Dalibard. 2010. “Gauge fields for ultracold atoms in optical superlattices”, New Jour. Phys., 12, 033007.
  • Goldman N, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-Delgado, M. Lewenstein, and I. B. Spielman. 2010. “Realistic Time-Reversal Invariant Topological Insulators with Neutral Atoms”, Phys. Rev. Lett., 105, 255302.
  • Guo H.-M. and M. Franz. 2009. “Topological insulator on the kagome lattice”, Phys. Rev. B, 80, 113102.
  • Guo H.-M and M. Franz. 2009. “Three-Dimensional Topological Insulators on the Pyrochlore Lattice”, Phys. Rev. Lett., 103, 20680.
  • Haldane F. D. M. 1988. “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. lett., 61, 2015.
  • Harper P. G. 1955. “The General Motion of Conduction Electrons in a Uniform Magnetic Field, with Application to the Diamagnetism of Metals”, Proc. Phys. Soc. A, 68, 874.
  • Hasan M. Z. and C. L. Kane. 2010. “Colloquium: Topological insulators”, Rev. Mod. Phys., 82, 3045.
  • Hatsugai Y. 1993. “Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function”, Phys. Rev. B, 48, 11851.
  • Hu X., M. Kargarian, and G. A. Fiete. 2011. “Topological Insulators and fractional quantum Hall effect on the ruby lattice”, Phys. Rev. B, 84,155116.
  • Jaksch D. and P. Zoller. 2005. “The cold atom Hubbard toolbox”, Annals of Physics, 315, 52.
  • Jaksch D., C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. 1998. “Cold Bosonic Atoms in Optical Lattices”, Phys. Rev. lett., 81, 3108.
  • Juzeliūnas G., J. Ruseckas, and J. Dalibard. 2010. “Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms”, Phys. Rev. A, 81, 053403.
  • Kane C. L., L. Fu and E. J. Mele. 2007. “Topological Insulators in Three Dimensions”, Phys. Rev. Lett., 98, 106803.
  • Kane C. and E. Mele. 2005. “Z2Topological Order and The Quantum Spin Hall Effect”, Phys. Rev. lett., 95, 146802.
  • Kane C. and E. Mele. 2005. “Quantum Spin Hall Effect in Graphene”, Phys. Rev. lett., 95, 226801.
  • Kennedy C. J., G. A. Siviloglou, H. Miyake, W. C. Burton, and W. Ketterle. 2013. “Spin-Orbit Coupling and Quantum Spin Hall Effect for Neutral Atoms without Spin Flips”, Phys. Rev. Lett., 111, 225301.
  • Lin Y.-J., K. Jimenez-Garca, and I. B. Spielman. 2011. “Spin–orbit-coupled Bose–Einstein condensates”, Nature, 471, 83.
  • Moore J. E. 2010. “The birth of topological insulators”, Nature, 464, 194.
  • Murakami S., N. Nagaosa, and S. Zhang. 2003. “Dissipationless Quantum Spin Current at Room Temperature”, Science, 301, 1348.
  • Nayak C., S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma. 2008. “Non-Abelian anyons and topological quantum computation”, Rev. Mod. Phys., 80, 1083.
  • Weeks C. and M. Franz. 2010. “Topological insulators on the Lieb and perovskite lattices”, Phys. Rev. B, 82, 085310, 2010.
  • Zhang S. C. 2011. “Topological insulators and superconductors”, Rev. Mod. Phys., 83, 1057.

A Tight Binding Model for Quantum Spin Hall Effect on Triangular Optical Lattice

Year 2019, Volume: 3 Issue: 1, 23 - 33, 30.07.2019

Abstract

Abstract
We propose a tight binding model for the quantum spin Hall system on triangular optical lattice and we
determined the edge state spectrum which contains gap traversing states as the hallmark of topological
insulator. The advantage of this system is the possibility of implementing it in the fermionic ultracold atomic
system whose nearly free electron limit is proposed by B. Beri and N. R. Cooper, Phys. Rev. Lett. 107, 145301
(2011).

References

  • Ashcroft N. W. and N. D. Mermin. 1976. “Solid State Physics”, Thomson Learning, Toronto.
  • Beri B. and N. R. Cooper. 2011. “Z2 Topological Insulators in Ultracold Atomic Gases”, Phys. Rev. Lett., 107, 145301.
  • Bernevig B. A. and S.-C. Zhang. 2006. “Quantum Spin Hall Effect”, Phys. Rev. lett., 96, 106802.
  • Cohen-Tannoudji C., J. Dupont-Roc, and G. Grynberg, 1992. “Atom-Photon Interactions”, Wiley, New York.
  • Cooper N. 2011. “Optical Flux Lattices for Ultracold Atomic Gases”, Phys. Rev. lett., 106, 175301 2.
  • Dalibard J., F. Gerbier, G. Juzeliūnas, and P. Öhberg. 2011. “Artificial gauge potentials for neutral atoms” Rev.Mod., Phys. 83, 1523.
  • Fu L. and C. L. Kane. 2006. “Time reversal polarization and a Z2 adiabatic spin pump”, Phys. Rev. B, 74, 195312.
  • Gerbier F. and J. Dalibard. 2010. “Gauge fields for ultracold atoms in optical superlattices”, New Jour. Phys., 12, 033007.
  • Goldman N, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-Delgado, M. Lewenstein, and I. B. Spielman. 2010. “Realistic Time-Reversal Invariant Topological Insulators with Neutral Atoms”, Phys. Rev. Lett., 105, 255302.
  • Guo H.-M. and M. Franz. 2009. “Topological insulator on the kagome lattice”, Phys. Rev. B, 80, 113102.
  • Guo H.-M and M. Franz. 2009. “Three-Dimensional Topological Insulators on the Pyrochlore Lattice”, Phys. Rev. Lett., 103, 20680.
  • Haldane F. D. M. 1988. “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. lett., 61, 2015.
  • Harper P. G. 1955. “The General Motion of Conduction Electrons in a Uniform Magnetic Field, with Application to the Diamagnetism of Metals”, Proc. Phys. Soc. A, 68, 874.
  • Hasan M. Z. and C. L. Kane. 2010. “Colloquium: Topological insulators”, Rev. Mod. Phys., 82, 3045.
  • Hatsugai Y. 1993. “Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function”, Phys. Rev. B, 48, 11851.
  • Hu X., M. Kargarian, and G. A. Fiete. 2011. “Topological Insulators and fractional quantum Hall effect on the ruby lattice”, Phys. Rev. B, 84,155116.
  • Jaksch D. and P. Zoller. 2005. “The cold atom Hubbard toolbox”, Annals of Physics, 315, 52.
  • Jaksch D., C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. 1998. “Cold Bosonic Atoms in Optical Lattices”, Phys. Rev. lett., 81, 3108.
  • Juzeliūnas G., J. Ruseckas, and J. Dalibard. 2010. “Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms”, Phys. Rev. A, 81, 053403.
  • Kane C. L., L. Fu and E. J. Mele. 2007. “Topological Insulators in Three Dimensions”, Phys. Rev. Lett., 98, 106803.
  • Kane C. and E. Mele. 2005. “Z2Topological Order and The Quantum Spin Hall Effect”, Phys. Rev. lett., 95, 146802.
  • Kane C. and E. Mele. 2005. “Quantum Spin Hall Effect in Graphene”, Phys. Rev. lett., 95, 226801.
  • Kennedy C. J., G. A. Siviloglou, H. Miyake, W. C. Burton, and W. Ketterle. 2013. “Spin-Orbit Coupling and Quantum Spin Hall Effect for Neutral Atoms without Spin Flips”, Phys. Rev. Lett., 111, 225301.
  • Lin Y.-J., K. Jimenez-Garca, and I. B. Spielman. 2011. “Spin–orbit-coupled Bose–Einstein condensates”, Nature, 471, 83.
  • Moore J. E. 2010. “The birth of topological insulators”, Nature, 464, 194.
  • Murakami S., N. Nagaosa, and S. Zhang. 2003. “Dissipationless Quantum Spin Current at Room Temperature”, Science, 301, 1348.
  • Nayak C., S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma. 2008. “Non-Abelian anyons and topological quantum computation”, Rev. Mod. Phys., 80, 1083.
  • Weeks C. and M. Franz. 2010. “Topological insulators on the Lieb and perovskite lattices”, Phys. Rev. B, 82, 085310, 2010.
  • Zhang S. C. 2011. “Topological insulators and superconductors”, Rev. Mod. Phys., 83, 1057.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Physics
Journal Section Research Article
Authors

Ahad K. Ardabılı 0000-0002-0957-1833

Tekin Dereli 0000-0002-6244-6054

Özgür E. Müstecaplıoğlu This is me 0000-0002-9134-3951

Publication Date July 30, 2019
Submission Date November 7, 2018
Acceptance Date March 13, 2019
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Ardabılı, A. K., Dereli, T., & Müstecaplıoğlu, Ö. E. (2019). A Tight Binding Model for Quantum Spin Hall Effect on Triangular Optical Lattice. AURUM Journal of Engineering Systems and Architecture, 3(1), 23-33.

.