Research Article
BibTex RIS Cite

Yapay Zeka Kullanarak Karmaşık Bir Ortamda Robotları Hareket Ettirme

Year 2020, Volume: 4 Issue: 2, 225 - 236, 30.12.2020

Abstract

Robotlar, farklı ortamlardaki çeşitli görevleri otomatikleştirmek için kullanılıyor. Bu uygulamalardan bazıları, robotların karmaşık ortamlarda gezinmesini ve hedeflerine ulaşmak için engellerden kaçınmasını gerektirir. Bu ortamların dinamik doğasına göre, robotların sürekli değişen ortamları işlemesine izin vermek için Yapay Zeka (AI) kullanılmaktadır. Mevcut teknikler yoğun işleme gücü ve enerji kaynakları gerektirir, bu da istihdamlarını sınırlayan birçok uygulamadır. Bu nedenle, bu çalışmada bir çarpışma tahmin edildiğinde robotun kontrolünü ele almak için yeni bir yöntem önerilmiştir. Çevrenin farklı gösterimleri kullanılır, böylece tarihsel bilgi verimli bir şekilde sağlanabilir. Ancak sonuçlar, tüm partinin kullanımının benzer karmaşıklıkla daha iyi performansa sahip olduğunu göstermektedir. Önerilen yöntem, navigasyon sırasında çarpışma sayısını azaltabilir ve robotun hızını artırabilir.

Project Number

58

References

  • Bottou, L. 2014. From machine learning to machine reasoning. Machine learning, 94(2), 133-149.
  • Choi, J., Park, K., Kim, M., & Seok, S. 2019. Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View. Paper presented at the 2019 International Conference on Robotics and Automation (ICRA).
  • Ha, D., & Schmidhuber, J. 2018. Recurrent world models facilitate policy evolution. Paper presented at the Advances in Neural Information Processing Systems.
  • Kahn, G., Villaflor, A., Pong, V., Abbeel, P., & Levine, S. 2017. Uncertainty-aware reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182.
  • Kim, K.-S., Kim, D.-E., & Lee, J.-M. 2018. Deep Learning Based on Smooth Driving for Autonomous Navigation. Paper presented at the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
  • Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
  • Littman, M. L. 1994. Markov games as a framework for multi-agent reinforcement learning Machine learning proceedings 1994 (pp. 157-163): Elsevier.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . Ostrovski, G. 2015. Human-level control through deep reinforcement learning. Nature, 518(7540), 529.
  • Robert, C. 2014. Machine learning, a probabilistic perspective: Taylor & Francis.
  • Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . . Graepel, T. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144.
  • Tan, M. 1993. Multi-agent reinforcement learning: Independent vs. cooperative agents. Paper presented at the Proceedings of the tenth international conference on machine learning.
  • Watkins, C. J., & Dayan, P. 1992. Q-learning. Machine learning, 8(3-4), 279-292.

Navigating Robots in a Complex Environment with Moving Objects Using Artificial Intelligence

Year 2020, Volume: 4 Issue: 2, 225 - 236, 30.12.2020

Abstract

Robots are being used to automate several tasks in different environments. Some of these applications require the robots to be able to navigate in complex environments and avoid obstacles to reach their destinations. According to the dynamic nature of these environments, Artificial Intelligence (AI) is being used to allow robots handle continuously-changing environments. The existing techniques require intensive processing power and energy sources, which limits their employment is many applications. Thus, a new method is proposed in this study to take control of the robot when a collision is predicted. Different representations of the environment are used, so that, historical information can be provided efficiently. However, the results show that the use of the entire batch has better performance with similar complexity. The proposed method has been able to reduce the number of collision and increasing the speed of the robot during the navigation.

Supporting Institution

altinbas un

Project Number

58

Thanks

thanks

References

  • Bottou, L. 2014. From machine learning to machine reasoning. Machine learning, 94(2), 133-149.
  • Choi, J., Park, K., Kim, M., & Seok, S. 2019. Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View. Paper presented at the 2019 International Conference on Robotics and Automation (ICRA).
  • Ha, D., & Schmidhuber, J. 2018. Recurrent world models facilitate policy evolution. Paper presented at the Advances in Neural Information Processing Systems.
  • Kahn, G., Villaflor, A., Pong, V., Abbeel, P., & Levine, S. 2017. Uncertainty-aware reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182.
  • Kim, K.-S., Kim, D.-E., & Lee, J.-M. 2018. Deep Learning Based on Smooth Driving for Autonomous Navigation. Paper presented at the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
  • Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
  • Littman, M. L. 1994. Markov games as a framework for multi-agent reinforcement learning Machine learning proceedings 1994 (pp. 157-163): Elsevier.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . Ostrovski, G. 2015. Human-level control through deep reinforcement learning. Nature, 518(7540), 529.
  • Robert, C. 2014. Machine learning, a probabilistic perspective: Taylor & Francis.
  • Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . . Graepel, T. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144.
  • Tan, M. 1993. Multi-agent reinforcement learning: Independent vs. cooperative agents. Paper presented at the Proceedings of the tenth international conference on machine learning.
  • Watkins, C. J., & Dayan, P. 1992. Q-learning. Machine learning, 8(3-4), 279-292.
There are 13 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Article
Authors

Omar Yaseen 0000-0003-3641-8655

Osman Nuri Uçan 0000-0002-4100-0045

Oğuz Bayat 0000-0001-5988-8882

Project Number 58
Publication Date December 30, 2020
Submission Date July 6, 2020
Acceptance Date December 25, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Yaseen, O., Uçan, O. N., & Bayat, O. (2020). Navigating Robots in a Complex Environment with Moving Objects Using Artificial Intelligence. AURUM Journal of Engineering Systems and Architecture, 4(2), 225-236.

.