Research Article
BibTex RIS Cite

Güneş Panellerinin Fotovoltaik Performansi Üzerinde Faz Değişimi Malzemesi (PCM) Etkisi

Year 2021, Volume: 5 Issue: 2, 211 - 223, 31.12.2021
https://doi.org/10.53600/ajesa.801090

Abstract

Fotovoltaik hücrelerin enerji üretiminin sınırlı olması, bu cihazların en iyi çalışma koşullarında çalıştırılmasının önemli olduğunu gösterir. Ayrıca, güneş ışığının daha düşük olması ve hücre sıcaklığının daha yüksek olması, bunların tümü güç üretimini olumsuz yönde etkileyen değişkenlerdir. Bu makalede, alternatif ısıl kontrol tekniklerinden biri olan faz değişim malzemesi kurulumu ile hücre sıcaklığının azaltılması tartışılmaktadır. Fotovoltaik panel sıcaklığını düşürmek için böyle bir yöntemde geniş sıcaklık aralığının üstesinden gelmek için önerilen sistemde üç tip faz değişim malzemesi (RT15, RT35 ve SP25E2) birlikte kullanılır. Önerilen şema MATLAB kullanılarak simüle edilmiştir. Simülasyon sonuçları, yüksek sıcaklıklı PCM’nin etkisinin genel etki olduğunu göstermektedir. Sıcaklık PCM erime sıcaklığından daha düşük olduğunda PCM’nin kullanılması bir dezavantaj oluşturur. Bu dezavantaj, panelin sıcaklığının ortam sıcaklığından daha fazla artmasıdır.

References

  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and sy-stems for solar energy applications. Renew. Sustain. Energy Rev 68, 693-706.
  • Biwole, P., P. Eclache, and F. Kuznik. 2011. Improving the performance of solar panels by the use of phase-change materials. in World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden 057, 2953–2960.
  • Brihmat, F., and S. Mekhtoub. 2014. PV cell temperature/PV power output relationships homer methodology calculation. in Conference Internationale des Energies Renouvelables” CIER’13”/ International Journal of Scientific Research & Engineering Technology 1(2).
  • Bruno, F. 2004. Using Phase Change Materials (PDMs) for Space Heating and Cooling in Buildings. Citeseer.
  • Huang, M.J., P.C. Eames, and B. Norton. 2004. Thermal regulation of building-integrated photovoltaics using phase change materials. Int. J. Heat Mass Transf. 47(12-13), 2715–2733.
  • Ibrahim, N.I., F.A. Al-Sulaiman, S. Rahman, B.S. Yilbas, and A.Z. Sahin. 2017. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review, Renew. Sustain. Energy Rev 74, 26-50.
  • Indartono, Y.S., S.D. Prakoso, A. Suwono, I.N. Zaini, and B. Fernaldi. 2015. Simulation and experimental study on effect of phase change material thickness to reduce temperature of photovoltaic panel. In 7th International Conference on Cooling & Heating Technologies (ICCHT 2014). IOP Conf. Series: Materials Science and Engineering 88, 12049.
  • Kim, H.B., M. Mae, Y. Choi, and T. Kiyota. 2017. Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials. Energy Build 152, 524–533.
  • Kladisios, P. and A. Steggou-Sagia. 2016. Using phase change materials in photovoltaic systems for cell temperature reduction: A finite difference simulation method. J. Therm. Eng. 2, 897–906.
  • Kravvaritis, E.D., K.A. Antonopoulos, and C. Tzivanidis. 2011. Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method. Appl. Energy 88(12), 4459-4469.
  • Mahamudul, H., M.M. Rahman, H.S.C. Metselaar, S. Mekhilef, S.A. Shezan, R. Sohel, S. Abu Karim, and W.N.I. Badiuzaman. 2016. Temperature regulation of photovoltaic module using phase change material: a numerical analysis and experimental investigation. Int. J. photoenergy 2016.
  • Nada, S.A., D.H. El-Nagar, and H.M.S. Hussein. 2018. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers. Manag 166, 735– 743.
  • Park, J., T. Kim, and S.-B. Leigh. 2014. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 105, 561–574.
  • Pielichowska, K., and K. Pielichowski. 2014. Phase change materials for thermal energy st-Orage. Prog. Mater. Sci. 65, 67–123.
  • Piratheepan, M., and T.N. Anderson. 2017. Performance of a building integrated photovoltaic/thermal concentrator for facade applications. Sol. Energy 153, 562–573.
  • Rahimi, M., A.A. Ranjbar, D.D. Ganji, K. Sedighi, M.J. Hosseini, and R. Bahram-Poury. 2014. Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. Int. Commun. Heat Mass Transf. 53, 109–115.
  • Sandberg, M. 1999. Cooling of building integrated photovoltaics by ventilation air. in Proceedings of HybVent Forum 99, 10–18.
  • Segal, A., M. Epstein, and A. Yogev. 2004. Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands. Sol. Energy 76(5), 591–601.
  • Souci, O.Y., and S. Houat. 2017 .Numerical study of thermos physical properties of a hollow brick filled by the PCM. J Mater Env. Sci 8, 2213–2220.
  • Ma, T., H. Yang, and L. Lu. 2014. Solar photovoltaic system modeling and performance Prediction. Renew. Sustain. Energy Rev. 36, 304–315.
  • Vitorino, N., J.C.C. Abrantes, and J.R. Frade. 2016. Quality criteria for phase change materials selection. Energy Convers. Manag. 124, 598–606.
  • Zalba, B., J.M. Marin, L.F. Cabeza, and H. Mehling. 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl.Therm.Eng. 23(3), 251-283.

Phase Change Material (PCM) Effect on Photovoltaic Performance of Solar Panels

Year 2021, Volume: 5 Issue: 2, 211 - 223, 31.12.2021
https://doi.org/10.53600/ajesa.801090

Abstract

Photovoltaic (PV) cells energy production limitation leads to make its important to operate those panels in the best operating conditions. In addition, sunlight is lower and cell temperature is higher, all of which are variables that adversely affect power generation. The potential reduction of cell temperature by one of the alternative thermal control techniques, phase change material (PCM) installation is discussed in this article. Three types of PCM (RT15, RT35, and SP25E2) are used together in the proposed system to overcome wide temperature range, in such method to reduce the PV panel temperature. The proposed scheme is simulated using MATLAB. Simulation results shows that the effect of high temperature PCM is the overall effect. If the temperature is smaller than the PCM melting point, the use of PCM is disadvantage. This disadvantage is that the temperature of the panel increases more than the ambient temperature.

References

  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and sy-stems for solar energy applications. Renew. Sustain. Energy Rev 68, 693-706.
  • Biwole, P., P. Eclache, and F. Kuznik. 2011. Improving the performance of solar panels by the use of phase-change materials. in World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden 057, 2953–2960.
  • Brihmat, F., and S. Mekhtoub. 2014. PV cell temperature/PV power output relationships homer methodology calculation. in Conference Internationale des Energies Renouvelables” CIER’13”/ International Journal of Scientific Research & Engineering Technology 1(2).
  • Bruno, F. 2004. Using Phase Change Materials (PDMs) for Space Heating and Cooling in Buildings. Citeseer.
  • Huang, M.J., P.C. Eames, and B. Norton. 2004. Thermal regulation of building-integrated photovoltaics using phase change materials. Int. J. Heat Mass Transf. 47(12-13), 2715–2733.
  • Ibrahim, N.I., F.A. Al-Sulaiman, S. Rahman, B.S. Yilbas, and A.Z. Sahin. 2017. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review, Renew. Sustain. Energy Rev 74, 26-50.
  • Indartono, Y.S., S.D. Prakoso, A. Suwono, I.N. Zaini, and B. Fernaldi. 2015. Simulation and experimental study on effect of phase change material thickness to reduce temperature of photovoltaic panel. In 7th International Conference on Cooling & Heating Technologies (ICCHT 2014). IOP Conf. Series: Materials Science and Engineering 88, 12049.
  • Kim, H.B., M. Mae, Y. Choi, and T. Kiyota. 2017. Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials. Energy Build 152, 524–533.
  • Kladisios, P. and A. Steggou-Sagia. 2016. Using phase change materials in photovoltaic systems for cell temperature reduction: A finite difference simulation method. J. Therm. Eng. 2, 897–906.
  • Kravvaritis, E.D., K.A. Antonopoulos, and C. Tzivanidis. 2011. Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method. Appl. Energy 88(12), 4459-4469.
  • Mahamudul, H., M.M. Rahman, H.S.C. Metselaar, S. Mekhilef, S.A. Shezan, R. Sohel, S. Abu Karim, and W.N.I. Badiuzaman. 2016. Temperature regulation of photovoltaic module using phase change material: a numerical analysis and experimental investigation. Int. J. photoenergy 2016.
  • Nada, S.A., D.H. El-Nagar, and H.M.S. Hussein. 2018. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers. Manag 166, 735– 743.
  • Park, J., T. Kim, and S.-B. Leigh. 2014. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 105, 561–574.
  • Pielichowska, K., and K. Pielichowski. 2014. Phase change materials for thermal energy st-Orage. Prog. Mater. Sci. 65, 67–123.
  • Piratheepan, M., and T.N. Anderson. 2017. Performance of a building integrated photovoltaic/thermal concentrator for facade applications. Sol. Energy 153, 562–573.
  • Rahimi, M., A.A. Ranjbar, D.D. Ganji, K. Sedighi, M.J. Hosseini, and R. Bahram-Poury. 2014. Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. Int. Commun. Heat Mass Transf. 53, 109–115.
  • Sandberg, M. 1999. Cooling of building integrated photovoltaics by ventilation air. in Proceedings of HybVent Forum 99, 10–18.
  • Segal, A., M. Epstein, and A. Yogev. 2004. Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands. Sol. Energy 76(5), 591–601.
  • Souci, O.Y., and S. Houat. 2017 .Numerical study of thermos physical properties of a hollow brick filled by the PCM. J Mater Env. Sci 8, 2213–2220.
  • Ma, T., H. Yang, and L. Lu. 2014. Solar photovoltaic system modeling and performance Prediction. Renew. Sustain. Energy Rev. 36, 304–315.
  • Vitorino, N., J.C.C. Abrantes, and J.R. Frade. 2016. Quality criteria for phase change materials selection. Energy Convers. Manag. 124, 598–606.
  • Zalba, B., J.M. Marin, L.F. Cabeza, and H. Mehling. 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl.Therm.Eng. 23(3), 251-283.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mena Ali 0000-0002-7155-1980

İbrahim Koç 0000-0002-1379-7093

Publication Date December 31, 2021
Submission Date September 28, 2020
Acceptance Date November 26, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Ali, M., & Koç, İ. (2021). Phase Change Material (PCM) Effect on Photovoltaic Performance of Solar Panels. AURUM Journal of Engineering Systems and Architecture, 5(2), 211-223. https://doi.org/10.53600/ajesa.801090

.