From Anatolian Plateau to American Plains: A transcontinental assessment of the EUMETSAT H SAF’s new generation snow water equivalent product over Türkiye and the conterminous U.S.
Year 2023,
Volume: 9 Issue: 2, 33 - 40, 01.01.2024
Semih Kuter
,
Çağrı Hasan Karaman
,
Mustafa Berkay Akpınar
,
Zuhal Akyürek
Abstract
The main frame of this paper is to present the first validation results of the new generation hemi-spherical daily snow water equivalent (SWE) product of the EUMETSAT H SAF, namely, H65. It utilizes data from passive microwave radiometry sensors to estimate SWE. Operating at a suitable spatial scale, it offers insights into snow accumulation and melting dynamics, advancing satellite-based snow monitoring across diverse regions. The validation period covers the 2021 snow year, from January to March 2021, during which the dry snow conditions prevail. The validation is conducted in two distinct geographic regions, Türkiye, and the conterminous U.S. For Türkiye, the in-situ snow depth measurements provided by the Turkish State Meteorological Service are employed. On the other hand, the 1-km gridded SWE dataset of NOAA National Ice and Snow Data Center is used in the validation over the U.S. The validation results over Türkiye yields an overall RMSE of 39.27 mm, whereas it reads 15.19 mm for the U.S. These results indicate that the H65 SWE product complies with the product requirement thresholds for both flat (40 mm) and mountainous (45 mm) areas.
References
- Breen, C., Vuyovich, C., Odden, J., Hall, D., Prugh, L., 2023. Evaluating MODIS snow products using an extensive wildlife camera network. Remote Sensing of Environment 295, 113648.
- Carroll, T., Cline, D., Fall, G., Nilsson, A., Li, L., Rost, A., 2001. NOHRSC Operations and the Simulation of Snow Cover Properties for the Conterminous U.S. In, The 69th Annual Meeting of the Western Snow Conference, National Operational Hydrologic Remote Sensing Center, National Weather Service, NOAA, Minnesota, US.
- H-SAF_H13_PUM, 2018. Product User Manual (PUM) for product H13 – SN-OBS-4 Snow water equivalent by MW radiometry. https://hsaf.meteoam.it/Products/Detail?prod= H13, Accessed on 30 August 2023.
- Hall, D.K., Riggs, G.A., Salomonson, V.V., 1995. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sensing of Environment 54, 127-140.
- Kuter, S., Akyurek, Z., Weber, G.W., 2018. Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sensing of Environment 205, 236-252.
- Kuter, S., Karaman, Ç.H., Akpınar, M.B., Akyürek, Z., 2022. Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. Anadolu Orman Araştırmaları Dergisi 8, 16-21.
- Margulis, S.A., Fang, Y., Li, D., Lettenmaier, D.P., Andreadis, K., 2019. The Utility of Infrequent Snow Depth Images for Deriving Continuous Space-Time Estimates of Seasonal Snow Water Equivalent. Geophysical Research Letters 46, 5331-5340.
- NSIDC, 2023. Summary of SMMR, SSM/I, and SSMIS Sensors http://rain.atmos.colostate.edu/FCDR/Archive_Docs/SSMIS_general/NOAA_STAR_SSMIS_TDR_CalVal_User_Manual.pdf, Accessed on 15 September 2023 2023.
- Painter, T.H., Dozier, J., Roberts, D.A., Davis, R.E., Green, R.O., 2003. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment 85, 64-77.
- Painter, T.H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R.E., Dozier, J., 2009. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sensing of Environment 113, 868-879.
- Pulliainen, J., 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment 101, 257-269.
- Pulliainen, J., Hallikainen, M., 2001. Retrieval of Regional Snow Water Equivalent from Space-Borne Passive Microwave Observations. Remote Sensing of Environment 75, 76-85.
- Saberi, N., Kelly, R., Flemming, M., Li, Q., 2020. Review of snow water equivalent retrieval methods using spaceborne passive microwave radiometry. International Journal of Remote Sensing 41, 996-1018.
- Sorman, A.U., Beser, O., 2013. Determination of snow water equivalent over the eastern part of Turkey using passive microwave data. Hydrological Processes 27, 1945-1958.
- Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., Bojkov, B., 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment 115, 3517-3529.
- Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment 97, 216-230.
- Viviroli, D., Dürr, H.H., Messerli, B., Meybeck, M., Weingartner, R., 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43.
- Webster, K., Fetterer, F., 2004. National Operational Hydrologic Remote Sensing Center. Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1 [SWE]. Boulder, Colorado USA. https://nsidc.org/sites/default/files/g02158-v001-userguide _2_1.pdf, Accessed on 1 August 2023.
Anadolu Platosundan Amerika Ovalarına: EUMETSAT H SAF'ın yeni nesil kar suyu eşdeğeri ürününün Türkiye ve ABD üzerindeki kıtalararası değerlendirmesi
Year 2023,
Volume: 9 Issue: 2, 33 - 40, 01.01.2024
Semih Kuter
,
Çağrı Hasan Karaman
,
Mustafa Berkay Akpınar
,
Zuhal Akyürek
Abstract
Bu makalenin ana çerçevesi, EUMETSAT H SAF'ın yeni nesil yarı küresel günlük kar suyu eşdeğeri (KSE) ürünü olan H65'in ilk doğrulama sonuçlarını sunmaktır. Ürün KSE’yi tahminlemek için pasif mikrodalga radyometri sensörlerinden gelen verileri kullanmaktadır. Uygun bir mekânsal ölçekte çalışan bu ürün, kar birikimi ve erime dinamikleri hakkında içgörüler sunarak çeşitli bölgelerde uydu tabanlı kar izlemeyi geliştirmektedir. Doğrulama dönemi, kuru kar koşullarının hüküm sürdüğü 2021 Ocak ayından Mart 2021'e kadar olan 2021 kar yılını kapsamaktadır. Doğrulama, Türkiye ve ABD olmak üzere iki farklı coğrafi bölgede gerçekleştirilmiştir. Türkiye için Meteoroloji Genel Müdürlüğü tarafından sağlanan yerinde kar derinliği ölçümleri kullanılmıştır. Öte yandan, NOAA Ulusal Buz ve Kar Veri Merkezi'nin 1 km'lik hücreli SWE veri seti ABD üzerindeki doğrulamada kullanılmıştır. Türkiye üzerindeki doğrulama sonuçları 39,27 mm'lik genel bir RMSE verirken, ABD için bu 15,19 mm olmaktadır. Bu sonuçlar, H65 SWE ürününün hem düz (40 mm) hem de dağlık (45 mm) alanlar için ürün gereksinim eşiklerine uyduğunu göstermektedir.
References
- Breen, C., Vuyovich, C., Odden, J., Hall, D., Prugh, L., 2023. Evaluating MODIS snow products using an extensive wildlife camera network. Remote Sensing of Environment 295, 113648.
- Carroll, T., Cline, D., Fall, G., Nilsson, A., Li, L., Rost, A., 2001. NOHRSC Operations and the Simulation of Snow Cover Properties for the Conterminous U.S. In, The 69th Annual Meeting of the Western Snow Conference, National Operational Hydrologic Remote Sensing Center, National Weather Service, NOAA, Minnesota, US.
- H-SAF_H13_PUM, 2018. Product User Manual (PUM) for product H13 – SN-OBS-4 Snow water equivalent by MW radiometry. https://hsaf.meteoam.it/Products/Detail?prod= H13, Accessed on 30 August 2023.
- Hall, D.K., Riggs, G.A., Salomonson, V.V., 1995. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sensing of Environment 54, 127-140.
- Kuter, S., Akyurek, Z., Weber, G.W., 2018. Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sensing of Environment 205, 236-252.
- Kuter, S., Karaman, Ç.H., Akpınar, M.B., Akyürek, Z., 2022. Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. Anadolu Orman Araştırmaları Dergisi 8, 16-21.
- Margulis, S.A., Fang, Y., Li, D., Lettenmaier, D.P., Andreadis, K., 2019. The Utility of Infrequent Snow Depth Images for Deriving Continuous Space-Time Estimates of Seasonal Snow Water Equivalent. Geophysical Research Letters 46, 5331-5340.
- NSIDC, 2023. Summary of SMMR, SSM/I, and SSMIS Sensors http://rain.atmos.colostate.edu/FCDR/Archive_Docs/SSMIS_general/NOAA_STAR_SSMIS_TDR_CalVal_User_Manual.pdf, Accessed on 15 September 2023 2023.
- Painter, T.H., Dozier, J., Roberts, D.A., Davis, R.E., Green, R.O., 2003. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment 85, 64-77.
- Painter, T.H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R.E., Dozier, J., 2009. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sensing of Environment 113, 868-879.
- Pulliainen, J., 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment 101, 257-269.
- Pulliainen, J., Hallikainen, M., 2001. Retrieval of Regional Snow Water Equivalent from Space-Borne Passive Microwave Observations. Remote Sensing of Environment 75, 76-85.
- Saberi, N., Kelly, R., Flemming, M., Li, Q., 2020. Review of snow water equivalent retrieval methods using spaceborne passive microwave radiometry. International Journal of Remote Sensing 41, 996-1018.
- Sorman, A.U., Beser, O., 2013. Determination of snow water equivalent over the eastern part of Turkey using passive microwave data. Hydrological Processes 27, 1945-1958.
- Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., Bojkov, B., 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment 115, 3517-3529.
- Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment 97, 216-230.
- Viviroli, D., Dürr, H.H., Messerli, B., Meybeck, M., Weingartner, R., 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43.
- Webster, K., Fetterer, F., 2004. National Operational Hydrologic Remote Sensing Center. Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1 [SWE]. Boulder, Colorado USA. https://nsidc.org/sites/default/files/g02158-v001-userguide _2_1.pdf, Accessed on 1 August 2023.