Research Article
BibTex RIS Cite

Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi

Year 2024, Volume: 10 Issue: 2, 22 - 35
https://doi.org/10.53516/ajfr.1505668

Abstract

Giriş ve Hedefler Bu çalışmada, İstanbul Üniversitesi-Cerrahpaşa Orman Fakültesi Eğitim Araştırma ve Uygulama Ormanı'nda mevcut bir yol güzergâhı seçilmiştir. Araştırma kapsamında, sayısal arazi modeli (SAM) kaynağı olarak havasal LiDAR verisi kullanılmış ve BIM ortamında bu güzergâha alternatif olarak 7 farklı yol güzergâhı geliştirilmiştir.
Yöntemler Birisi mevcut yol güzergâhı olmak üzere toplamda 8 farklı yol güzergâhı için BIM modelleri oluşturulmuştur. Yol geometrisi ve güzergâhlarının ekolojik etkilerini değerlendirmek amacıyla 14 farklı kriter belirlenmiştir. Bu modellerden elde edilen bilgilerle, çok kriterli karar verme (ÇKKV) yöntemlerinden biri olan CRITIC metodu kullanılarak kriterler ağırlıklandırılmıştır. Belirlenen alternatifler ekolojik açıdan karşılaştırılmış ve MOORA yöntemi ile en optimum çözüm bulunacak şekilde yol güzergâhları sıralanmıştır.
Bulgular Ekolojik açıdan yapılan sıralamaya göre en iyi performans sıralaması mevcut yolda iken, en düşük performansı ise 4 numaralı yol almıştır. Mevcut yol güzergâhının tüm teknik kıstasları sağlayacak bir şekilde tasarlanmış, planlanmış ve inşa edilmiş olduğu anlaşılmaktadır.
Sonuçlar Çalışma sonuçları göstermiştir ki, yol projelendirilmesi sırasında ÇKKV yöntemlerinin etkin bir şekilde kullanılarak, farklı yol güzergâhları arasında optimum çözümü bulmada, etkin bir karar destek aracı olduğu görülmektedir. Ayrıca, BIM yazılımları ve ÇKKV yöntemlerinin entegrasyonu, orman yolu projelendirmesinde önemli avantajlar sunduğu, bu entegrasyon ile alternatif yol güzergâhlarının belirlenmesinde hem zaman tasarrufu sağlayacağı hem de doğruluğunun artırılacağı ortaya konulmuştur.

Supporting Institution

YÖK

Thanks

Bu çalışma kapsamında kullanılan bir kısım veri seti İstanbul Üniversitesi-Cerrahpaşa Lisansüstü Eğitim Enstitüsü doktora öğrencisi Murat Özmen’in YÖK 100/2000 bursuyla desteklenen “Hassas Ormancılık Yaklaşımıyla BIM Yazılımı Kullanılarak Optimize Orman Yolu Güzergahının Belirlenmesi” adlı doktora tezinden türetilmiştir.

References

  • Akay, A. E., 2006. Minimizing total costs of forest roads with computer-aided design model. Sadhana- Academy Proceedings in Engineering Sciences, 31(5), 621–633.
  • Akay, A. E., Wing, M. G., Sessions, J., 2014. Estimating sediment reduction cost for low-volume forest roads using a LiDAR-derived high-resolution DEM. The Baltic Journal of Road and Bridge Engineering, 9(1), 52-57.
  • Akay, A. O., Demir, M., Akgul, M. 2018. Assessment of risk factors in forest road design and construction activities with fuzzy analytic hierarchy process approach in Turkey. Environmental Monitoring and Assessment, 190, 1-12.
  • Akay, A. O., Senturk, E., Akgul, M., Demir, M. (2023). Spatial assessment of sediment risk with integrated entropy-based WASPAS and fuzzy clustering methods in Turkey: impact of forestry activities and meteorological factors. Environmental Monitoring and Assessment, 195(10), 1201.
  • Akgul, M., Yurtseven, H., Gulci, S., Akay, A. E., 2018. Evaluation of UAV-and GNSS-based DEMs for earthwork volume. Arabian Journal for Science and Engineering, 43(4), 1893-1909.
  • Amakhchan, W., El Kharki, O., Cherif, E.K., Wahbi, M., Yazidi Alaoui, O., Maatouk, M. ve Boulaassal, H., 2022, August, an overview of tools and algorithms used to classify, detect, and monitor forest area using lidar data, In International Conference on Pattern Recognition, pp. 171-182, Cham: Springer Nature Switzerland.
  • Aryal, R.R., Latifi, H., Heurich, M., Hahn, M., 2017. Impact of slope, aspect, and habitat-type on lidar-derived digital terrain models in a near natural, heterogeneous temperate forest. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85, pp.243-255.
  • Bennett, A.F., 1991. Roads, Roadsides and Wildlife Conservation: A Review. In: Saunders, D.A. and Hobbs, R.J., Eds., Nature Conservation 2: The Role of Corridors, Surrey Beatty & Sons, New South Wales, 99-117.
  • Bilby, R.E., Ward, J.W., 1989. Changes in Characteristics and Function of Woody Debris with Increasing Size of Streams in Western Washington. Transactions of the American Fisheries Society, 118, 368-378.
  • Brauers, W. K., Zavadskas, E. K., 2006. The MOORA method and its application to privatization in transition economy. Control and Cybernetics, 35(2), 445-469.
  • Brown, A., 2019. Ecological Impacts of Forest Roads. Journal of Environmental Management, 45(2), 210-225.
  • Chan, D. W., Olawumi, T. O., Ho, A. M., 2019. Perceived benefits of and barriers to Building Information Modelling (BIM) implementation in construction: The case of Hong Kong. Journal of Building Engineering, 25, 100764.
  • Chung, W., Sessions, J., 2001. Designing a forest road network using heuristic optimization techniques, In: Appalachian Hardwood: Managing Change, Corvallis, Oregon.
  • Chung, W., Stückelberger, J., Aruga, K., Cundy, T. W., 2008. Forest Road network design using a trade-off analysis between skidding and road construction costs. Canadian Journal of Forest Research, 38(3), 439-448.
  • Contreras, M., Aracena, P., Chung, W., 2012. Improving accuracy in earthwork volume estimation for proposed forest roads using a high-resolution digital elevation model, Croatian journal of forest engineering. Journal for Theory and Application of Forestry Engineering, 33(1), 125-142.
  • Çalışkan, E., 2013. Environmental impacts of forest road construction on mountainous terrain. Iranian Journal of Environmental Health Science and Engineering, 10, 1-8.
  • Demircioğlu, M., Coşkun, İ. T., 2018. CRITIC-MOOSRA yöntemi ve UPS seçimi üzerine bir uygulama. Çukurova Üniversitesi sosyal bilimler enstitüsü Dergisi, 27(1), 183-195.
  • Diakoulaki, D., Mavrotas, G. Papayannakis, L., 1995. Determining objective weights in multiple criteria problems. The CRITIC method. Computers and Operations Research 22(7), 763-770.
  • Dodson, E., Coakley, J., Sessions, J., 2006. The analytic hierarchy process: a tutorial for use in prioritizing forest road investments to minimize environmental effects. International Journal of Forest Engineering. 17(2), 51-69.
  • Drosos, V. C., Tasionas, G., Koukoulos, I., Kasapidis, I., Stavridis, V., Sismanidis, I., 2020. Multicriteria Decision Making Techniques for Improved and Sustainable Forest Road Engineering. Proceedings of The International Symposium” Forest and Sustainable Development”, 9th Edition, 16th of October 2020, Brașov, Romania. Dynamoprimer, 2016. Introduction to Dynamo, https://primer.dynamobim.org/index.html (Erişim tarihi: 15.04.2024)
  • Eker, M., Ada, N., 2011. Orman yolu kalite analizine yönelik ölçüt ve gösterge setinin oluşturulması. Turkish Journal of Forestry, 12(2), 89-97.
  • Eker, R., Aydin, A., 2014. Assessment of forest road conditions in terms of landslide susceptibility: a case study in Yığılca Forest Directorate (Turkey). Turkish Journal of Agriculture and Forestry, 38(2), Article 14.
  • Erdaş, O., 1997. Orman yolları. KTÜ Orman Fakültesi.
  • Ersöz, F., Atav, A. 2011. Çok kriterli karar verme problemlerinde MOORA yöntemi. KHO Savunma Bilimleri Enstitüsü Harekat Araştırması, 1(10), 1-10.
  • El-Diraby, T., Krijnen, T., Papagelis, M., 2017. BIM-based collaborative design and socio-technical analytics of green buildings. Automation in Construction, 82, 59-74.
  • Forman, R. T., Alexander, L.E., 1998. Roads and their major ecological effects. Annual Review of Ecology, Evolution, and Systematics, 29, 207-231.
  • Ghajar, I., Najafi, A., Karimimajd, A. M., Boston, K., Ali Torabi, S., 2013. A program for cost estimation of forest road construction using engineer's method. Forest Science and Technology, 9(3), 111-117.
  • Jaafari, A., Rezaeian, J., Omrani, M. S. O., 2017. Spatial prediction of slope failures in support of forestry operations safety, Croatian Journal of Forest Engineering. Journal for Theory and Application of Forestry Engineering, 38(1), 107-118.
  • Kalach, M., Srour, I., Abdul-Malak, M. A., 2018. Envisioned roles of BIM for design delivery under design-build projects. In Construction research congress 2018 (pp. 552-561).
  • Kastridis, A., 2020. Impact of forest roads on hydrological processes. Forests, 11(11), 1201.
  • Kiracı, K., Bakır, M., 2019. Critic temelli Edas yöntemi ile havayolu işletmelerinde performans ölçümü uygulamasi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (35), 157-174.
  • Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31-49.
  • Luce, C., 2002. Hydrological Processes and Pathways Affected by Forest Roads: What Do We Still Need to Learn? Hydrological Processes. 16. 2901- 2904. 10.1002/hyp.5061.
  • Lyon, L.J., 1984. Road effects and impacts on wildlife and fisheries: Proceedings, forest transportation symposium; 1984 December 11-13; Casper, WY. Denver, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Region.
  • Matinnia, B., Parsakhoo, A., Mohamadi, J., Jouibary, S. S., 2018. Study of the LiDAR accuracy in mapping forest road alignments and estimating the earthwork volume. Journal of Forest Science, 64(11), 1212-4834.
  • Mohammadi, M., Rezaei, J., 2020. Ensemble ranking: Aggregation of rankings produced by different multi-criteria decision-making methods. Omega, 96, 102254.
  • Najafi, A., Sobhani, H., Saeed, A., Makhdom, M., Mohajer, M. M., 2008. Planning and assessment of alternative forest road and skidding networks. Croatian Journal of Forest engineering, 29(1), 63–73.
  • Najafi, A., Mohammadi Samani, K., 2010. Planning road network in mountain forests using GIS and Analytic Hierarchical Process (AHP). Caspian Journal of Environmental Sciences, 8(2), 151-162.
  • Ryan, T., Phillips, H., Ramsay, J., Dempsey, J., 2004. Forest Road Manual. Guidelines for the design, construction and management of forest roads, COFORD, Dublin.
  • Sarkar, A., Panja, S. C., Das, D., Sarkar, B., 2015. Developing an efficient decision support system for non-traditional machine selection: an application of MOORA and MOOSRA. Production and Manufacturing Research, 3(1), 324-342.
  • Smith, P., Johnson, L., 2018. Factors influencing sustainable forest road planning and design. Forest Science, 55(4), 421-435.
  • Smith, J., Doe, A., Johnson, B., 2018. Applications of remote sensing data in excavation and fill volume calculations. International Journal of Remote Sensing, 40(5), 1321-1337.
  • Stückelberger, J. A., Heinimann, H. R., Burlet, E. C., 2006. Modeling spatial variability in the life-cycle costs of low-volume forest roads. European Journal of Forest Research, 125, 377-390.
  • Şentürk, N., Akgül, M., Öztürk, T., Akay, A. O., 2018. Orman yollarında kazı-dolgu miktarlarının hesaplanmasında topoğrafik harita tabanlı geleneksel yöntem ile bilgisayar destekli yöntemin karşılaştırılması. Bartın Orman Fakültesi Dergisi, 20(3), 618-626.

Evaluation of alternative forest road routes in terms of performance using the CRITIC-based MOORA method

Year 2024, Volume: 10 Issue: 2, 22 - 35
https://doi.org/10.53516/ajfr.1505668

Abstract

Background and aims In this study, an existing road route in Istanbul University-Cerrahpaşa Forestry Faculty Education Research and Application Forest was selected. The research involved the use of aerial LiDAR data as a digital terrain model (DEM) source, with the development of seven different road routes as alternatives to this route in a Building Information Modelling (BIM) environment.
Methods BIM models were created for a total of eight different road routes, with one of these being an existing road route. In order to evaluate the ecological impacts of road geometry and routes, 14 different criteria were determined. The information obtained from these models was then weighted using the CRITIC method, one of the multi-criteria decision-making (MCDM) methods. The alternatives were then compared ecologically, and the road routes were ranked by MOORA method to find the most optimum solution.
Results The ecological ranking revealed that the existing road exhibited the most optimal performance, while road number 4 exhibited the least optimal performance. It is evident that the existing road route has been designed, planned, and constructed in a manner that aligns with all technical criteria.
Conclusions The results of the study indicate that the effective utilisation of CRMV methods during road design serves as an effective decision-support tool for identifying the most optimal solution between different road routes. Furthermore, it was demonstrated that the integration of BIM software and CRM methods provides substantial benefits in the design of forest road projects. This integration will result in reduced timeframes and enhanced accuracy in the identification of alternative road routes.

References

  • Akay, A. E., 2006. Minimizing total costs of forest roads with computer-aided design model. Sadhana- Academy Proceedings in Engineering Sciences, 31(5), 621–633.
  • Akay, A. E., Wing, M. G., Sessions, J., 2014. Estimating sediment reduction cost for low-volume forest roads using a LiDAR-derived high-resolution DEM. The Baltic Journal of Road and Bridge Engineering, 9(1), 52-57.
  • Akay, A. O., Demir, M., Akgul, M. 2018. Assessment of risk factors in forest road design and construction activities with fuzzy analytic hierarchy process approach in Turkey. Environmental Monitoring and Assessment, 190, 1-12.
  • Akay, A. O., Senturk, E., Akgul, M., Demir, M. (2023). Spatial assessment of sediment risk with integrated entropy-based WASPAS and fuzzy clustering methods in Turkey: impact of forestry activities and meteorological factors. Environmental Monitoring and Assessment, 195(10), 1201.
  • Akgul, M., Yurtseven, H., Gulci, S., Akay, A. E., 2018. Evaluation of UAV-and GNSS-based DEMs for earthwork volume. Arabian Journal for Science and Engineering, 43(4), 1893-1909.
  • Amakhchan, W., El Kharki, O., Cherif, E.K., Wahbi, M., Yazidi Alaoui, O., Maatouk, M. ve Boulaassal, H., 2022, August, an overview of tools and algorithms used to classify, detect, and monitor forest area using lidar data, In International Conference on Pattern Recognition, pp. 171-182, Cham: Springer Nature Switzerland.
  • Aryal, R.R., Latifi, H., Heurich, M., Hahn, M., 2017. Impact of slope, aspect, and habitat-type on lidar-derived digital terrain models in a near natural, heterogeneous temperate forest. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85, pp.243-255.
  • Bennett, A.F., 1991. Roads, Roadsides and Wildlife Conservation: A Review. In: Saunders, D.A. and Hobbs, R.J., Eds., Nature Conservation 2: The Role of Corridors, Surrey Beatty & Sons, New South Wales, 99-117.
  • Bilby, R.E., Ward, J.W., 1989. Changes in Characteristics and Function of Woody Debris with Increasing Size of Streams in Western Washington. Transactions of the American Fisheries Society, 118, 368-378.
  • Brauers, W. K., Zavadskas, E. K., 2006. The MOORA method and its application to privatization in transition economy. Control and Cybernetics, 35(2), 445-469.
  • Brown, A., 2019. Ecological Impacts of Forest Roads. Journal of Environmental Management, 45(2), 210-225.
  • Chan, D. W., Olawumi, T. O., Ho, A. M., 2019. Perceived benefits of and barriers to Building Information Modelling (BIM) implementation in construction: The case of Hong Kong. Journal of Building Engineering, 25, 100764.
  • Chung, W., Sessions, J., 2001. Designing a forest road network using heuristic optimization techniques, In: Appalachian Hardwood: Managing Change, Corvallis, Oregon.
  • Chung, W., Stückelberger, J., Aruga, K., Cundy, T. W., 2008. Forest Road network design using a trade-off analysis between skidding and road construction costs. Canadian Journal of Forest Research, 38(3), 439-448.
  • Contreras, M., Aracena, P., Chung, W., 2012. Improving accuracy in earthwork volume estimation for proposed forest roads using a high-resolution digital elevation model, Croatian journal of forest engineering. Journal for Theory and Application of Forestry Engineering, 33(1), 125-142.
  • Çalışkan, E., 2013. Environmental impacts of forest road construction on mountainous terrain. Iranian Journal of Environmental Health Science and Engineering, 10, 1-8.
  • Demircioğlu, M., Coşkun, İ. T., 2018. CRITIC-MOOSRA yöntemi ve UPS seçimi üzerine bir uygulama. Çukurova Üniversitesi sosyal bilimler enstitüsü Dergisi, 27(1), 183-195.
  • Diakoulaki, D., Mavrotas, G. Papayannakis, L., 1995. Determining objective weights in multiple criteria problems. The CRITIC method. Computers and Operations Research 22(7), 763-770.
  • Dodson, E., Coakley, J., Sessions, J., 2006. The analytic hierarchy process: a tutorial for use in prioritizing forest road investments to minimize environmental effects. International Journal of Forest Engineering. 17(2), 51-69.
  • Drosos, V. C., Tasionas, G., Koukoulos, I., Kasapidis, I., Stavridis, V., Sismanidis, I., 2020. Multicriteria Decision Making Techniques for Improved and Sustainable Forest Road Engineering. Proceedings of The International Symposium” Forest and Sustainable Development”, 9th Edition, 16th of October 2020, Brașov, Romania. Dynamoprimer, 2016. Introduction to Dynamo, https://primer.dynamobim.org/index.html (Erişim tarihi: 15.04.2024)
  • Eker, M., Ada, N., 2011. Orman yolu kalite analizine yönelik ölçüt ve gösterge setinin oluşturulması. Turkish Journal of Forestry, 12(2), 89-97.
  • Eker, R., Aydin, A., 2014. Assessment of forest road conditions in terms of landslide susceptibility: a case study in Yığılca Forest Directorate (Turkey). Turkish Journal of Agriculture and Forestry, 38(2), Article 14.
  • Erdaş, O., 1997. Orman yolları. KTÜ Orman Fakültesi.
  • Ersöz, F., Atav, A. 2011. Çok kriterli karar verme problemlerinde MOORA yöntemi. KHO Savunma Bilimleri Enstitüsü Harekat Araştırması, 1(10), 1-10.
  • El-Diraby, T., Krijnen, T., Papagelis, M., 2017. BIM-based collaborative design and socio-technical analytics of green buildings. Automation in Construction, 82, 59-74.
  • Forman, R. T., Alexander, L.E., 1998. Roads and their major ecological effects. Annual Review of Ecology, Evolution, and Systematics, 29, 207-231.
  • Ghajar, I., Najafi, A., Karimimajd, A. M., Boston, K., Ali Torabi, S., 2013. A program for cost estimation of forest road construction using engineer's method. Forest Science and Technology, 9(3), 111-117.
  • Jaafari, A., Rezaeian, J., Omrani, M. S. O., 2017. Spatial prediction of slope failures in support of forestry operations safety, Croatian Journal of Forest Engineering. Journal for Theory and Application of Forestry Engineering, 38(1), 107-118.
  • Kalach, M., Srour, I., Abdul-Malak, M. A., 2018. Envisioned roles of BIM for design delivery under design-build projects. In Construction research congress 2018 (pp. 552-561).
  • Kastridis, A., 2020. Impact of forest roads on hydrological processes. Forests, 11(11), 1201.
  • Kiracı, K., Bakır, M., 2019. Critic temelli Edas yöntemi ile havayolu işletmelerinde performans ölçümü uygulamasi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (35), 157-174.
  • Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31-49.
  • Luce, C., 2002. Hydrological Processes and Pathways Affected by Forest Roads: What Do We Still Need to Learn? Hydrological Processes. 16. 2901- 2904. 10.1002/hyp.5061.
  • Lyon, L.J., 1984. Road effects and impacts on wildlife and fisheries: Proceedings, forest transportation symposium; 1984 December 11-13; Casper, WY. Denver, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Region.
  • Matinnia, B., Parsakhoo, A., Mohamadi, J., Jouibary, S. S., 2018. Study of the LiDAR accuracy in mapping forest road alignments and estimating the earthwork volume. Journal of Forest Science, 64(11), 1212-4834.
  • Mohammadi, M., Rezaei, J., 2020. Ensemble ranking: Aggregation of rankings produced by different multi-criteria decision-making methods. Omega, 96, 102254.
  • Najafi, A., Sobhani, H., Saeed, A., Makhdom, M., Mohajer, M. M., 2008. Planning and assessment of alternative forest road and skidding networks. Croatian Journal of Forest engineering, 29(1), 63–73.
  • Najafi, A., Mohammadi Samani, K., 2010. Planning road network in mountain forests using GIS and Analytic Hierarchical Process (AHP). Caspian Journal of Environmental Sciences, 8(2), 151-162.
  • Ryan, T., Phillips, H., Ramsay, J., Dempsey, J., 2004. Forest Road Manual. Guidelines for the design, construction and management of forest roads, COFORD, Dublin.
  • Sarkar, A., Panja, S. C., Das, D., Sarkar, B., 2015. Developing an efficient decision support system for non-traditional machine selection: an application of MOORA and MOOSRA. Production and Manufacturing Research, 3(1), 324-342.
  • Smith, P., Johnson, L., 2018. Factors influencing sustainable forest road planning and design. Forest Science, 55(4), 421-435.
  • Smith, J., Doe, A., Johnson, B., 2018. Applications of remote sensing data in excavation and fill volume calculations. International Journal of Remote Sensing, 40(5), 1321-1337.
  • Stückelberger, J. A., Heinimann, H. R., Burlet, E. C., 2006. Modeling spatial variability in the life-cycle costs of low-volume forest roads. European Journal of Forest Research, 125, 377-390.
  • Şentürk, N., Akgül, M., Öztürk, T., Akay, A. O., 2018. Orman yollarında kazı-dolgu miktarlarının hesaplanmasında topoğrafik harita tabanlı geleneksel yöntem ile bilgisayar destekli yöntemin karşılaştırılması. Bartın Orman Fakültesi Dergisi, 20(3), 618-626.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Forest Products Transport and Evaluation Information
Journal Section Articles
Authors

Murat Özmen 0009-0003-6110-628X

Mustafa Akgül 0000-0001-6387-5080

Necmettin Şentürk 0000-0002-6043-7488

Early Pub Date October 30, 2024
Publication Date
Submission Date June 27, 2024
Acceptance Date August 7, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Özmen, M., Akgül, M., & Şentürk, N. (2024). Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi. Anadolu Orman Araştırmaları Dergisi, 10(2), 22-35. https://doi.org/10.53516/ajfr.1505668
AMA Özmen M, Akgül M, Şentürk N. Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi. AJFR. October 2024;10(2):22-35. doi:10.53516/ajfr.1505668
Chicago Özmen, Murat, Mustafa Akgül, and Necmettin Şentürk. “Alternatif Orman Yolu güzergâhlarının Performans açısından CRITIC Temelli MOORA yöntemiyle değerlendirilmesi”. Anadolu Orman Araştırmaları Dergisi 10, no. 2 (October 2024): 22-35. https://doi.org/10.53516/ajfr.1505668.
EndNote Özmen M, Akgül M, Şentürk N (October 1, 2024) Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi. Anadolu Orman Araştırmaları Dergisi 10 2 22–35.
IEEE M. Özmen, M. Akgül, and N. Şentürk, “Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi”, AJFR, vol. 10, no. 2, pp. 22–35, 2024, doi: 10.53516/ajfr.1505668.
ISNAD Özmen, Murat et al. “Alternatif Orman Yolu güzergâhlarının Performans açısından CRITIC Temelli MOORA yöntemiyle değerlendirilmesi”. Anadolu Orman Araştırmaları Dergisi 10/2 (October 2024), 22-35. https://doi.org/10.53516/ajfr.1505668.
JAMA Özmen M, Akgül M, Şentürk N. Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi. AJFR. 2024;10:22–35.
MLA Özmen, Murat et al. “Alternatif Orman Yolu güzergâhlarının Performans açısından CRITIC Temelli MOORA yöntemiyle değerlendirilmesi”. Anadolu Orman Araştırmaları Dergisi, vol. 10, no. 2, 2024, pp. 22-35, doi:10.53516/ajfr.1505668.
Vancouver Özmen M, Akgül M, Şentürk N. Alternatif orman yolu güzergâhlarının performans açısından CRITIC temelli MOORA yöntemiyle değerlendirilmesi. AJFR. 2024;10(2):22-35.