Research Article
BibTex RIS Cite

Transfer Learning in Severity Classification in Alzheimer's : A Benchmark Comparative Study on Deep Neural Networks

Year 2024, Volume: 6 Issue: 2, 91 - 108, 31.07.2024

Abstract

Alzheimer's disease has become a condition of the brain that progresses over time and impacts a significant number of individuals worldwide. Early diagnosis, timely intervention and management of this disease process are very important in Alzheimer's disease. With regard to this study, we propose a transfer learning based early detection approach for Alzheimer's disease using Moderate Demented, Mild Demented, No Demented and Very Mild Demented classification sets. The proposed approach utilizes transfer learning based on the use of a deep neural network model that has been trained to extract features from brain imaging data. To evaluate the performance in transfer learning, a dataset of 6,400 images from brain MRI scans is augmented using data augmentation techniques and used in various convolutional neural network models the like VGG-19, Resnet-50, DenseNet-121, Inception-V3, VGG-16. The results are planned to show that these models achieve high sensitivity, specificity and high accuracy in detecting early signs of Alzheimer's disease. The study also emphasizes these advantages of using transfer methods of learning for early Alzheimer's detection by comparing it with various other deep learning models. The findings of this research suggest that transfer learning-based approaches can aid in the early detection of Alzheimer's disease., which affects millions of people, and offer a practical solution to classify cognitive impairment. With the proposed approach, it is shown that by helping clinicians to detect individuals at risk of Alzheimer's at an early stage, it will be possible to provide timely intervention and, in fact, better patient care. In terms of more effective applicability in clinical applications, the proposed approach can be applied to different and larger datasets and populations to make improvements and provide convenience to clinicians and patients. The best success rate of the models we used is achieved on the VGG19, RESNET50 KNN model with 99 percent.

References

  • Alzheimer's Association. (2016). 2016 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 12(4), 459-509. https://doi.org/10.1016/j.jalz.2016.03.001
  • Ribe, E. M., & Lovestone, S. (2016). Insulin signalling in Alzheimer's disease and diabetes: from epidemiology to molecular links. Journal of internal medicine, 280(5), 430–442. https://doi.org/10.1111/joim.12534
  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues in clinical neuroscience, 11(2), 111–128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu
  • Hayajneh, F. A., & Shehadeh, A. (2014). The impact of adopting person-centred care approach for people with Alzheimer's on professional caregivers' burden: an interventional study. International journal of nursing practice, 20(4), 438–445. https://doi.org/10.1111/ijn.12251
  • Scott, C. B. (2013). Alzheimer’s Disease Caregiver Burden: Does Resilience Matter? Journal of Human Behavior in the Social Environment, 23(8), 879–892. https://doi.org/10.1080/10911359.2013.803451
  • Winblad, B., Brodaty, H., Gauthier, S., Morris, J. C., Orgogozo, J. M., Rockwood, K., Schneider, L., Takeda, M., Tariot, P., & Wilkinson, D. (2001). Pharmacotherapy of Alzheimer's disease: is there a need to redefine treatment success?. International journal of geriatric psychiatry, 16(7), 653–666. https://doi.org/10.1002/gps.496
  • Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 835-838). Melbourne, VIC, Australia: IEEE. https://doi.org/10.1109/ISBI.2017.7950647
  • Islam, J., & Zhang, Y. (2018). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 5(2). https://doi.org/10.1186/s40708-018-0080-3
  • Platero, C., Lin, L., & Tobar, M. C. (2019). Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease. Neuroinformatics, 17(1), 43–61. https://doi.org/10.1007/s12021-018-9380-2
  • Zhan, L., Liu, Y., Wang, Y., Zhou, J., Jahanshad, N., Ye, J., Thompson, P. M., & Alzheimer's Disease Neuroimaging Initiative (ADNI) (2015). Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition. Frontiers in neuroscience, 9, 257. https://doi.org/10.3389/fnins.2015.00257
  • He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., & Neubig, G. (2021). Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366. https://doi.org/10.48550/arXiv.2110.04366
  • Wang, Y., Song, Y., Xie, H., Li, W., Hu, B., & Yang, G. (2017). Reduction of Gibbs artifacts in magnetic resonance imaging based on Convolutional Neural Network. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1-5. doi: 10.1109/CISP-BMEI.2017.8302197.
  • Varuna Shree, N., & Kumar, T. N. R. (2018). Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain informatics, 5(1), 23–30. https://doi.org/10.1007/s40708-017-0075-5
  • Vlaardingerbroek, M. T., & Boer, J. A. (2013). Magnetic resonance imaging: theory and practice. Springer Science & Business Media.
  • Zulkoffli, Z., & Shariff, T. A. (2019). Detection of brain tumor and extraction of features in MRI images using K-means clustering and morphological operations. In 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 1-5). Selangor, Malaysia: IEEE. https://doi.org/10.1109/I2CACIS.2019.8825094
  • Higaki, T., Nakamura, Y., Tatsugami, F., Nakaura, T., & Awai, K. (2019). Improvement of image quality at CT and MRI using deep learning. Japanese journal of radiology, 37(1), 73–80. https://doi.org/10.1007/s11604-018-0796-2
  • Sreeja, S., Mubarak, D.M.N. (2023). Pseudo-CT Generation from MRI Images for Bone Lesion Detection Using Deep Learning Approach. In: Ranganathan, G., Bestak, R., Fernando, X. (eds) Pervasive Computing and Social Networking. Lecture Notes in Networks and Systems, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-19-2840-6_47
  • Xu, Y., He, X., Li, Y., Pang, P., Shu, Z., & Gong, X. (2021). The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. Journal of magnetic resonance imaging : JMRI, 54(2), 571–583. https://doi.org/10.1002/jmri.27536
  • Kavitha, P. Subha, R. Priya, R. (2021). An Implementation Of Statistical Feature Algorithms For The Detection Of Brain Tumor. Journal of Journal of Cognitive Human-Computer Interaction, 1( 2), 57 - 62. DOI: DOI: https://doi.org/10.54216/JCHCI.010202
  • Fetit, A. E., Novak, J., Rodriguez, D., Auer, D. P., Clark, C. A., Grundy, R. G., Peet, A. C., & Arvanitis, T. N. (2018). Radiomics in paediatric neuro-oncology: A multicentre study on MRI texture analysis. NMR in biomedicine, 31(1), 10.1002/nbm.3781. https://doi.org/10.1002/nbm.3781
  • Tian, T., Li, J., Zhang, G., Wang, J., Liu, D., Wan, C., Fang, J., Wu, D., Zhou, Y., & Zhu, W. (2020). Effects of childhood trauma experience and COMT Val158Met polymorphism on brain connectivity in a multimodal MRI study. Brain and behavior, 10(12), e01858. https://doi.org/10.1002/brb3.1858
  • Sun, F., Morris, D., & Babyn, P. (2009). The optimal linear transformation-based fMRI feature space analysis. Medical & biological engineering & computing, 47(11), 1119–1129. https://doi.org/10.1007/s11517-009-0504-6
  • Chan, H. P., Chen, W., Wang, L., & King, I. (2019). Neural keyphrase generation via reinforcement learning with adaptive rewards. arXiv preprint arXiv:1906.04106. https://doi.org/10.48550/arXiv.1906.04106
  • Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9(1), 381-386.
  • Ayodele, T. O. (2010). Types of machine learning algorithms. In New Advances in Machine Learning (pp. 3-19). InTech.
  • Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 1310-1315.
  • Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A., Rueckert, D., & Alzheimer's Disease Neuroimaging Initiative (2013). Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. NeuroImage, 65, 167–175. https://doi.org/10.1016/j.neuroimage.2012.09.065
  • Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9(1), 381-386.
  • Awad, M., Khanna, R., Awad, M., & Khanna, R. (2015). Support vector machines for classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (pp. 39-66). Apress.
  • Saritas, M. M., & Yasar, A. (2019). Performance analysis of ANN and Naive Bayes classification algorithm for data classification. International journal of intelligent systems and applications in engineering, 7(2), 88-91.
  • Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K. (2003). KNN Model-Based Approach in Classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds) On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. OTM 2003. Lecture Notes in Computer Science, vol 2888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39964-3_62
  • Huang, H., Xu, H., Wang, X., & Silamu, W. (2015). Maximum F1-score discriminative training criterion for automatic mispronunciation detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(4), 787-797.
  • Acevedo, P., Jiménez-Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the geographical background in species distribution modelling. Journal of Biogeography, 39(8), 1383-1390.
  • Sujatha, P., & Mahalakshmi, K. (2020, November). Performance evaluation of supervised machine learning algorithms in prediction of heart disease. In 2020 IEEE International Conference for Innovation in Technology (INOCON) (pp. 1-7). IEEE.
  • Mggdadi, E., Al-Aiad, A., Al-Ayyad, M. S., & Darabseh, A. (2021, May). Prediction Alzheimer's disease from MRI images using deep learning. In 2021 12th International Conference on Information and Communication Systems (ICICS) (pp. 120-125). IEEE.
  • Acharya, H., Mehta, R., & Singh, D. K. (2021, April). Alzheimer disease classification using transfer learning. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1503-1508). IEEE.
  • Assmi, A., Elhabyb, K., Benba, A., & Jilbab, A. (2024). Alzheimer’s disease classification: A comprehensive study. Multimedia Tools and Applications, 83(3), 4567-4590.
Year 2024, Volume: 6 Issue: 2, 91 - 108, 31.07.2024

Abstract

References

  • Alzheimer's Association. (2016). 2016 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 12(4), 459-509. https://doi.org/10.1016/j.jalz.2016.03.001
  • Ribe, E. M., & Lovestone, S. (2016). Insulin signalling in Alzheimer's disease and diabetes: from epidemiology to molecular links. Journal of internal medicine, 280(5), 430–442. https://doi.org/10.1111/joim.12534
  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues in clinical neuroscience, 11(2), 111–128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu
  • Hayajneh, F. A., & Shehadeh, A. (2014). The impact of adopting person-centred care approach for people with Alzheimer's on professional caregivers' burden: an interventional study. International journal of nursing practice, 20(4), 438–445. https://doi.org/10.1111/ijn.12251
  • Scott, C. B. (2013). Alzheimer’s Disease Caregiver Burden: Does Resilience Matter? Journal of Human Behavior in the Social Environment, 23(8), 879–892. https://doi.org/10.1080/10911359.2013.803451
  • Winblad, B., Brodaty, H., Gauthier, S., Morris, J. C., Orgogozo, J. M., Rockwood, K., Schneider, L., Takeda, M., Tariot, P., & Wilkinson, D. (2001). Pharmacotherapy of Alzheimer's disease: is there a need to redefine treatment success?. International journal of geriatric psychiatry, 16(7), 653–666. https://doi.org/10.1002/gps.496
  • Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 835-838). Melbourne, VIC, Australia: IEEE. https://doi.org/10.1109/ISBI.2017.7950647
  • Islam, J., & Zhang, Y. (2018). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 5(2). https://doi.org/10.1186/s40708-018-0080-3
  • Platero, C., Lin, L., & Tobar, M. C. (2019). Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease. Neuroinformatics, 17(1), 43–61. https://doi.org/10.1007/s12021-018-9380-2
  • Zhan, L., Liu, Y., Wang, Y., Zhou, J., Jahanshad, N., Ye, J., Thompson, P. M., & Alzheimer's Disease Neuroimaging Initiative (ADNI) (2015). Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition. Frontiers in neuroscience, 9, 257. https://doi.org/10.3389/fnins.2015.00257
  • He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., & Neubig, G. (2021). Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366. https://doi.org/10.48550/arXiv.2110.04366
  • Wang, Y., Song, Y., Xie, H., Li, W., Hu, B., & Yang, G. (2017). Reduction of Gibbs artifacts in magnetic resonance imaging based on Convolutional Neural Network. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1-5. doi: 10.1109/CISP-BMEI.2017.8302197.
  • Varuna Shree, N., & Kumar, T. N. R. (2018). Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain informatics, 5(1), 23–30. https://doi.org/10.1007/s40708-017-0075-5
  • Vlaardingerbroek, M. T., & Boer, J. A. (2013). Magnetic resonance imaging: theory and practice. Springer Science & Business Media.
  • Zulkoffli, Z., & Shariff, T. A. (2019). Detection of brain tumor and extraction of features in MRI images using K-means clustering and morphological operations. In 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 1-5). Selangor, Malaysia: IEEE. https://doi.org/10.1109/I2CACIS.2019.8825094
  • Higaki, T., Nakamura, Y., Tatsugami, F., Nakaura, T., & Awai, K. (2019). Improvement of image quality at CT and MRI using deep learning. Japanese journal of radiology, 37(1), 73–80. https://doi.org/10.1007/s11604-018-0796-2
  • Sreeja, S., Mubarak, D.M.N. (2023). Pseudo-CT Generation from MRI Images for Bone Lesion Detection Using Deep Learning Approach. In: Ranganathan, G., Bestak, R., Fernando, X. (eds) Pervasive Computing and Social Networking. Lecture Notes in Networks and Systems, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-19-2840-6_47
  • Xu, Y., He, X., Li, Y., Pang, P., Shu, Z., & Gong, X. (2021). The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. Journal of magnetic resonance imaging : JMRI, 54(2), 571–583. https://doi.org/10.1002/jmri.27536
  • Kavitha, P. Subha, R. Priya, R. (2021). An Implementation Of Statistical Feature Algorithms For The Detection Of Brain Tumor. Journal of Journal of Cognitive Human-Computer Interaction, 1( 2), 57 - 62. DOI: DOI: https://doi.org/10.54216/JCHCI.010202
  • Fetit, A. E., Novak, J., Rodriguez, D., Auer, D. P., Clark, C. A., Grundy, R. G., Peet, A. C., & Arvanitis, T. N. (2018). Radiomics in paediatric neuro-oncology: A multicentre study on MRI texture analysis. NMR in biomedicine, 31(1), 10.1002/nbm.3781. https://doi.org/10.1002/nbm.3781
  • Tian, T., Li, J., Zhang, G., Wang, J., Liu, D., Wan, C., Fang, J., Wu, D., Zhou, Y., & Zhu, W. (2020). Effects of childhood trauma experience and COMT Val158Met polymorphism on brain connectivity in a multimodal MRI study. Brain and behavior, 10(12), e01858. https://doi.org/10.1002/brb3.1858
  • Sun, F., Morris, D., & Babyn, P. (2009). The optimal linear transformation-based fMRI feature space analysis. Medical & biological engineering & computing, 47(11), 1119–1129. https://doi.org/10.1007/s11517-009-0504-6
  • Chan, H. P., Chen, W., Wang, L., & King, I. (2019). Neural keyphrase generation via reinforcement learning with adaptive rewards. arXiv preprint arXiv:1906.04106. https://doi.org/10.48550/arXiv.1906.04106
  • Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9(1), 381-386.
  • Ayodele, T. O. (2010). Types of machine learning algorithms. In New Advances in Machine Learning (pp. 3-19). InTech.
  • Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 1310-1315.
  • Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A., Rueckert, D., & Alzheimer's Disease Neuroimaging Initiative (2013). Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. NeuroImage, 65, 167–175. https://doi.org/10.1016/j.neuroimage.2012.09.065
  • Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9(1), 381-386.
  • Awad, M., Khanna, R., Awad, M., & Khanna, R. (2015). Support vector machines for classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (pp. 39-66). Apress.
  • Saritas, M. M., & Yasar, A. (2019). Performance analysis of ANN and Naive Bayes classification algorithm for data classification. International journal of intelligent systems and applications in engineering, 7(2), 88-91.
  • Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K. (2003). KNN Model-Based Approach in Classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds) On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. OTM 2003. Lecture Notes in Computer Science, vol 2888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39964-3_62
  • Huang, H., Xu, H., Wang, X., & Silamu, W. (2015). Maximum F1-score discriminative training criterion for automatic mispronunciation detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(4), 787-797.
  • Acevedo, P., Jiménez-Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the geographical background in species distribution modelling. Journal of Biogeography, 39(8), 1383-1390.
  • Sujatha, P., & Mahalakshmi, K. (2020, November). Performance evaluation of supervised machine learning algorithms in prediction of heart disease. In 2020 IEEE International Conference for Innovation in Technology (INOCON) (pp. 1-7). IEEE.
  • Mggdadi, E., Al-Aiad, A., Al-Ayyad, M. S., & Darabseh, A. (2021, May). Prediction Alzheimer's disease from MRI images using deep learning. In 2021 12th International Conference on Information and Communication Systems (ICICS) (pp. 120-125). IEEE.
  • Acharya, H., Mehta, R., & Singh, D. K. (2021, April). Alzheimer disease classification using transfer learning. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1503-1508). IEEE.
  • Assmi, A., Elhabyb, K., Benba, A., & Jilbab, A. (2024). Alzheimer’s disease classification: A comprehensive study. Multimedia Tools and Applications, 83(3), 4567-4590.
There are 37 citations in total.

Details

Primary Language English
Subjects Health Informatics and Information Systems
Journal Section Research Article
Authors

Seda Kırtay 0000-0003-2415-9131

Muhammed Tayyip Koçak 0000-0003-2276-2658

Publication Date July 31, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Kırtay, S., & Koçak, M. T. (2024). Transfer Learning in Severity Classification in Alzheimer’s : A Benchmark Comparative Study on Deep Neural Networks. Aurum Journal of Health Sciences, 6(2), 91-108.