Clinical Research
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 3, 181 - 201, 31.12.2024

Abstract

References

  • Situmeang, R. F. V., & Pangestu, A. (2021). Visual hallucination in delirium associated coronavirus disease 2019 (COVID-19): A case series. Journal of the Neurological Sciences, 429, 119906. https://doi.org/10.1016/j.jns.2021.119906
  • Petridou, A. I., Zagora, E. T., Petridis, P., Korres, G. S., Gazouli, M., Xenelis, I., ... & Kaliora, A. C. (2019). The effect of antioxidant supplementation in patients with tinnitus and normal hearing or hearing loss: a randomized, double-blind, placebo controlled trial. Nutrients, 11(12), 3037. https://doi.org/10.3390/nu11123037
  • Hansen, K. B., Yi, F., Perszyk, R. E., Furukawa, H., Wollmuth, L. P., Gibb, A. J., & Traynelis, S. F. (2018). Structure, function, and allosteric modulation of NMDA receptors. Journal of General Physiology, 150(8), 1081-1105. https://doi.org/10.1085/jgp.201812032
  • Coelho, C., Tyler, R., Ji, H., Rojas-Roncancio, E., Witt, S., Tao, P., ... & Gantz, B. J. (2016). Survey on the effectiveness of dietary supplements to treat tinnitus. American journal of audiology, 25(3), 184-205. https://doi.org/10.1044/2016_AJA-16-0021
  • Arafet, K., Serrano-Aparicio, N., Lodola, A., Mulholland, A. J., González, F. V., Świderek, K., & Moliner, V. (2021). Mechanism of inhibition of SARS-CoV-2 M pro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chemical Science, 12(4), 1433-1444. https://doi.org/10.1039/d0sc06195f
  • Jorgensen, S. C., Kebriaei, R., & Dresser, L. D. (2020). Remdesivir: review of pharmacology, pre‐clinical data, and emerging clinical experience for COVID‐19. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40(7), 659-671. https://doi.org/10.1002/phar.2429
  • Gotoh, Y., Yamazaki, T., Ishizuka, Y., & Ise, H. (2021). Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes. Colloids and Surfaces B: Biointerfaces, 198, 111406. https://doi.org/10.1016/j.colsurfb.2020.111406
  • Alzaabi, M. M., Hamdy, R., Ashmawy, N. S., Hamoda, A. M., Alkhayat, F., Khademi, N. N., Al Joud, S. M. A., El-Keblawy, A. A., & Soliman, S. S. M. (2022). Flavonoids are promising safe therapy against COVID-19. Phytochemistry reviews : proceedings of the Phytochemical Society of Europe, 21(1), 291–312. https://doi.org/10.1007/s11101-021-09759-z
  • Jannat, K., Paul, A. K., Bondhon, T. A., Hasan, A., Nawaz, M., Jahan, R., Mahboob, T., Nissapatorn, V., Wilairatana, P., Pereira, M. L., & Rahmatullah, M. (2021). Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics, 13(11), 1895. https://doi.org/10.3390/pharmaceutics13111895
  • Özdemir, M., Köksoy, B., Ceyhan, D., Sayın, K., Erçağ, E., Bulut, M., & Yalçın, B. (2022). Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes. Journal of biomolecular structure & dynamics, 40(11), 4905–4920. https://doi.org/10.1080/07391102.2020.1863263
  • Sampson, C., & Ukah, O. (2023). Acute Cerebral Infarct and Saddle Pulmonary Embolism in a Post-COVID-19 Patient Treated With Thrombolytics. Cureus, 15(1). https://doi.org/10.7759/cureus.33877
  • Ogunyemi, O. M., Gyebi, G. A., Elfiky, A. A., Afolabi, S. O., Ogunro, O. B., Adegunloye, A. P., & Ibrahim, I. M. (2020). Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an in silico perspective. Antiviral Chemistry and Chemotherapy, 28, 2040206620984076. https://doi.org/10.1177/2040206620984076
  • Ngwa, W., Kumar, R., Thompson, D., Lyerly, W., Moore, R., Reid, T. E., Lowe, H., & Toyang, N. (2020). Potential of Flavonoid-Inspired Phytomedicines against COVID-19. Molecules (Basel, Switzerland), 25(11), 2707. https://doi.org/10.3390/molecules25112707
  • Xydakis, M. S., Dehgani-Mobaraki, P., Holbrook, E. H., Geisthoff, U. W., Bauer, C., Hautefort, C., Herman, P., Manley, G. T., Lyon, D. M., & Hopkins, C. (2020). Smell and taste dysfunction in patients with COVID-19. The Lancet. Infectious diseases, 20(9), 1015–1016. https://doi.org/10.1016/S1473-3099(20)30293-0
  • Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C., Poon, R. W., Tsoi, H. W., Lo, S. K., Chan, K. H., Poon, V. K., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C., Chen, H., Hui, C. K., … Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet (London, England), 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 Cannon, M. L., Westover, J. B., Bleher, R., Sanchez-Gonzalez, M. A., & Ferrer, G. A. (2020). In Vitro Analysis of the Anti-viral Potential of nasal spray constituents against SARS-CoV-2. bioRxiv, 2020-12.
  • https://doi.org/10.1101/2020.12.02.408575 https://www.biorxiv.org/content/10.1101/2020.12.02.408575v1 Vofo, G., Brodie, R., & Gross, M. (2020). Nasal lavage containing Angiotensin-Converting Enzyme-2 agonist can prevent and reduce viral load in COVID-19. Medical hypotheses, 144, 110207. https://doi.org/10.1016/j.mehy.2020.110207
  • Saeedi-Boroujeni, A., & Mahmoudian-Sani, M. R. (2021). Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation, 18, 1-9. https://doi.org/10.1186/s12950-021-00268-6
  • Gu, Y. Y., Zhang, M., Cen, H., Wu, Y. F., Lu, Z., Lu, F., Liu, X. S., & Lan, H. Y. (2021). Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PloS one, 16(1), e0245209. https://doi.org/10.1371/journal.pone.0245209
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
  • Huang, J., Song, W., Huang, H., & Sun, Q. (2020). Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Journal of clinical medicine, 9(4), 1131. https://doi.org/10.3390/jcm9041131
  • Istifli, E. S., Netz, P. A., Sihoglu Tepe, A., Husunet, M. T., Sarikurkcu, C., & Tepe, B. (2022). In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. Journal of biomolecular structure & dynamics, 40(6), 2460–2474. https://doi.org/10.1080/07391102.2020.1840444
  • Gorla, U. S., Rao, K., Kulandaivelu, U. S., Alavala, R. R., & Panda, S. P. (2021). Lead Finding from Selected Flavonoids with Antiviral (SARS-CoV-2) Potentials Against COVID-19: An In-silico Evaluation. Combinatorial chemistry & high throughput screening, 24(6), 879–890. https://doi.org/10.2174/1386207323999200818162706
  • Deng, J. G., Hou, X. T., Zhang, T. J., Bai, G., Hao, E. W., Chu, J. J. H., Wattanathorn, J., Sirisa-Ard, P., Soo Ee, C., Low, J., & Liu, C. X. (2020). Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chinese herbal medicines, 12(3), 207–213. https://doi.org/10.1016/j.chmed.2020.05.003

MOLECULAR DOCKING STUDY OF LIPOFLAVONOIDS IN THE TREATMENT OF TINNITUS AGAINST THE EFFECTS OF COVID-19

Year 2024, Volume: 6 Issue: 3, 181 - 201, 31.12.2024

Abstract

Background/aim:Treatment options are sought for coronavirus disease (COVID-19), which is a global health problem, and the demand for drugs that will eliminate or reduce the effects of SARS-CoV-2 is increasing day by day. The coronavirus disease leaves permanent effects and can even be fatal in patients with weakened immune systems. Considering this important factor, in this study, natural lipoflavonoid nutritional supplement, which is used both to strengthen the immune system and to treat tinnitus, smell and taste disorders, was chosen as the target drug.
Materials and methods: Molecular docking analyzes of lipoflavonoid compounds were performed to understand the molecular interaction mechanisms between SARS-CoV-2, NMDAR and VKORC1 proteins.
Results: In particular, the docking score of thiamine nitrate in NSP16 (-7.97 kcal/mol) and vitamin K epoxide reductase (-7.13 kcal/mol) was found to be high. Riboflavin's insertion score in K epoxide reductase (-8.66 kcal/mol) was also found to be high.
Conclusion: These docking binding scores are indications that these compounds can be used as potential inhibitors. The hypothesis that the common symptoms of COVID-19, olfactory-taste disorder and tinnitus, can be treated in a short time and effectively with lipoflavonoids, and also that the replication of the coronavirus can be stopped, has been theoretically proven.

References

  • Situmeang, R. F. V., & Pangestu, A. (2021). Visual hallucination in delirium associated coronavirus disease 2019 (COVID-19): A case series. Journal of the Neurological Sciences, 429, 119906. https://doi.org/10.1016/j.jns.2021.119906
  • Petridou, A. I., Zagora, E. T., Petridis, P., Korres, G. S., Gazouli, M., Xenelis, I., ... & Kaliora, A. C. (2019). The effect of antioxidant supplementation in patients with tinnitus and normal hearing or hearing loss: a randomized, double-blind, placebo controlled trial. Nutrients, 11(12), 3037. https://doi.org/10.3390/nu11123037
  • Hansen, K. B., Yi, F., Perszyk, R. E., Furukawa, H., Wollmuth, L. P., Gibb, A. J., & Traynelis, S. F. (2018). Structure, function, and allosteric modulation of NMDA receptors. Journal of General Physiology, 150(8), 1081-1105. https://doi.org/10.1085/jgp.201812032
  • Coelho, C., Tyler, R., Ji, H., Rojas-Roncancio, E., Witt, S., Tao, P., ... & Gantz, B. J. (2016). Survey on the effectiveness of dietary supplements to treat tinnitus. American journal of audiology, 25(3), 184-205. https://doi.org/10.1044/2016_AJA-16-0021
  • Arafet, K., Serrano-Aparicio, N., Lodola, A., Mulholland, A. J., González, F. V., Świderek, K., & Moliner, V. (2021). Mechanism of inhibition of SARS-CoV-2 M pro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chemical Science, 12(4), 1433-1444. https://doi.org/10.1039/d0sc06195f
  • Jorgensen, S. C., Kebriaei, R., & Dresser, L. D. (2020). Remdesivir: review of pharmacology, pre‐clinical data, and emerging clinical experience for COVID‐19. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40(7), 659-671. https://doi.org/10.1002/phar.2429
  • Gotoh, Y., Yamazaki, T., Ishizuka, Y., & Ise, H. (2021). Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes. Colloids and Surfaces B: Biointerfaces, 198, 111406. https://doi.org/10.1016/j.colsurfb.2020.111406
  • Alzaabi, M. M., Hamdy, R., Ashmawy, N. S., Hamoda, A. M., Alkhayat, F., Khademi, N. N., Al Joud, S. M. A., El-Keblawy, A. A., & Soliman, S. S. M. (2022). Flavonoids are promising safe therapy against COVID-19. Phytochemistry reviews : proceedings of the Phytochemical Society of Europe, 21(1), 291–312. https://doi.org/10.1007/s11101-021-09759-z
  • Jannat, K., Paul, A. K., Bondhon, T. A., Hasan, A., Nawaz, M., Jahan, R., Mahboob, T., Nissapatorn, V., Wilairatana, P., Pereira, M. L., & Rahmatullah, M. (2021). Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics, 13(11), 1895. https://doi.org/10.3390/pharmaceutics13111895
  • Özdemir, M., Köksoy, B., Ceyhan, D., Sayın, K., Erçağ, E., Bulut, M., & Yalçın, B. (2022). Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes. Journal of biomolecular structure & dynamics, 40(11), 4905–4920. https://doi.org/10.1080/07391102.2020.1863263
  • Sampson, C., & Ukah, O. (2023). Acute Cerebral Infarct and Saddle Pulmonary Embolism in a Post-COVID-19 Patient Treated With Thrombolytics. Cureus, 15(1). https://doi.org/10.7759/cureus.33877
  • Ogunyemi, O. M., Gyebi, G. A., Elfiky, A. A., Afolabi, S. O., Ogunro, O. B., Adegunloye, A. P., & Ibrahim, I. M. (2020). Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an in silico perspective. Antiviral Chemistry and Chemotherapy, 28, 2040206620984076. https://doi.org/10.1177/2040206620984076
  • Ngwa, W., Kumar, R., Thompson, D., Lyerly, W., Moore, R., Reid, T. E., Lowe, H., & Toyang, N. (2020). Potential of Flavonoid-Inspired Phytomedicines against COVID-19. Molecules (Basel, Switzerland), 25(11), 2707. https://doi.org/10.3390/molecules25112707
  • Xydakis, M. S., Dehgani-Mobaraki, P., Holbrook, E. H., Geisthoff, U. W., Bauer, C., Hautefort, C., Herman, P., Manley, G. T., Lyon, D. M., & Hopkins, C. (2020). Smell and taste dysfunction in patients with COVID-19. The Lancet. Infectious diseases, 20(9), 1015–1016. https://doi.org/10.1016/S1473-3099(20)30293-0
  • Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C., Poon, R. W., Tsoi, H. W., Lo, S. K., Chan, K. H., Poon, V. K., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C., Chen, H., Hui, C. K., … Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet (London, England), 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 Cannon, M. L., Westover, J. B., Bleher, R., Sanchez-Gonzalez, M. A., & Ferrer, G. A. (2020). In Vitro Analysis of the Anti-viral Potential of nasal spray constituents against SARS-CoV-2. bioRxiv, 2020-12.
  • https://doi.org/10.1101/2020.12.02.408575 https://www.biorxiv.org/content/10.1101/2020.12.02.408575v1 Vofo, G., Brodie, R., & Gross, M. (2020). Nasal lavage containing Angiotensin-Converting Enzyme-2 agonist can prevent and reduce viral load in COVID-19. Medical hypotheses, 144, 110207. https://doi.org/10.1016/j.mehy.2020.110207
  • Saeedi-Boroujeni, A., & Mahmoudian-Sani, M. R. (2021). Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation, 18, 1-9. https://doi.org/10.1186/s12950-021-00268-6
  • Gu, Y. Y., Zhang, M., Cen, H., Wu, Y. F., Lu, Z., Lu, F., Liu, X. S., & Lan, H. Y. (2021). Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PloS one, 16(1), e0245209. https://doi.org/10.1371/journal.pone.0245209
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
  • Huang, J., Song, W., Huang, H., & Sun, Q. (2020). Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Journal of clinical medicine, 9(4), 1131. https://doi.org/10.3390/jcm9041131
  • Istifli, E. S., Netz, P. A., Sihoglu Tepe, A., Husunet, M. T., Sarikurkcu, C., & Tepe, B. (2022). In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. Journal of biomolecular structure & dynamics, 40(6), 2460–2474. https://doi.org/10.1080/07391102.2020.1840444
  • Gorla, U. S., Rao, K., Kulandaivelu, U. S., Alavala, R. R., & Panda, S. P. (2021). Lead Finding from Selected Flavonoids with Antiviral (SARS-CoV-2) Potentials Against COVID-19: An In-silico Evaluation. Combinatorial chemistry & high throughput screening, 24(6), 879–890. https://doi.org/10.2174/1386207323999200818162706
  • Deng, J. G., Hou, X. T., Zhang, T. J., Bai, G., Hao, E. W., Chu, J. J. H., Wattanathorn, J., Sirisa-Ard, P., Soo Ee, C., Low, J., & Liu, C. X. (2020). Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chinese herbal medicines, 12(3), 207–213. https://doi.org/10.1016/j.chmed.2020.05.003
There are 23 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Murat Enöz 0000-0002-2660-1950

Publication Date December 31, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2024 Volume: 6 Issue: 3

Cite

APA Enöz, M. (2024). MOLECULAR DOCKING STUDY OF LIPOFLAVONOIDS IN THE TREATMENT OF TINNITUS AGAINST THE EFFECTS OF COVID-19. Aurum Journal of Health Sciences, 6(3), 181-201.