Research Article
BibTex RIS Cite

Investigation of The Factors Affecting the Attitudes of Academicians Towards Project Development to Enhance Innovation

Year 2021, Volume: 12 Issue: 45, 65 - 89, 21.05.2021
https://doi.org/10.5824/ajite.2021.02.004.x

Abstract

Economic development can be achieved through knowledge-based growth. In this respect, universities have a significant role to produce knowledge and contribute innovation management through their research and development activities. However, too many obstacles bring difficulties on academicians to develop projects to increase innovation capabilities of the countries. The aim of this study is to identify the factors affecting attitudes of academicians towards research and development projects. In this study, an attitude scale and a structural model were developed to identify the key factors. According to the consequences obtained, perception of self-worth, perceived self-efficacy, reputation, anxiety, team interaction and justice factors directly and significantly affect academicians' attitudes towards project development. It is envisaged that identification of the factors affecting academicians' attitudes towards project development leads to rethink the obstacles of universities to become targeted innovative and entrepreneurial universities, contributing the enhancement of innovation, and produce projects that support the country's economy and solve social problems.

Supporting Institution

Atatürk Üniversitesi

Project Number

SBA-2018-6339

Thanks

This study was supported by the scientific research projects of Atatürk University with the SBA-2018-6339 project ID.

References

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Processes, 50, 179-211.
  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting behavior. Englewood Cliffs, NJ: Prentice Hall.
  • Autio, E. (1998). Evaluation of RTD in Regional Systems of Innovation. European Planning Studies, 6(2), 131–40.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Inc.
  • Bock, G., Zmud, R., Kim, Y., & Lee, J. (2005). Behavioral Intention Formation in Knowledge Sharing: Examining the Roles of Extrinsic Motivators, Social-Psychological Forces, and Organizational Climate. MIS Quarterly, 29(1), 87-111.
  • Bolin, B. L., Lee, K. H., GlenMaye, L. F., & Yoon, D. P. (2012). Impact of research orientation on attitudes toward research of social work students. Journal of Social Work Education, 48(2), 223-243.
  • Cáceres-Carrasco, F. R., Santos, F. J., & Guzmán, C. (2019). Social capital, personal values and economic development: effect on innovation. An international analysis. Innovation: The European Journal of Social Science Research, 1-26.
  • Chin, W. (1998). Commentary: Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), 7-16.
  • Cooke, P. (2002). Regional Innovation Systems: General Findings and Some new Evidence from Biotechnology Clusters. The Journal of Technology Transfer, 27(1), 133–45.
  • Creswell, J. W., & Clark, V. L. P. (2014). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi. Ankara: Anı Press.
  • Cornell University, INSEAD, and WIPO (2020). The Global Innovation Index 2020: Who Will Finance Innovation? Ithaca, Fontainebleau, and Geneva.
  • Everton, T., Galton, M., & Pell, T. (2000). Teachers' perspectives on educational research: Knowledge and context. Journal of Education for Teaching: International Research and Pedagogy, 26(2), 167-182.
  • Field, A. (2005). Discovering Statistics Using SPSS. Second Edition. London, Thousand Oaks, New Delphi: Sage Publications Ltd.
  • Fornell, C., & Larcker, D. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
  • Gardner, B. S., & Korth, S. J. (1998). A framework for learning to work in teams. Journal of Education for Business, 74(1), 28-33.
  • Gravetter, F. J., & Wallnau, L. B. (2000). Statistics for the Behavioral. Belmont, CA: Wadsworth.
  • West, G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with non-normal variables: problems and remedies. R. H. Hoyle, (Ed.), London: Stage.
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. New Jersey: Pearson Prentice Hall.
  • Hsu, C. L., & Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.
  • İlhan, N., Şekerci, A. R., Sözbilir, M., & Yıldırım, A. (2014). Eğitim Araştırmalarına Yönelik Öğretmen Tutum Ölçeğinin Geliştirilmesi: Geçerlik Ve Güvenirlik Çalışması. Batı Anadolu Eğitim Bilimleri Dergisi, 4(8), 31-56.
  • Kalaycı, N. (2008). An Application Related to Project Based Learning in Higher Education Analysis in Terms of Students Directing the Project. Science and Education, 33(147), 85-104.
  • Korkmaz, Ö., Şahin, A., & Yeşil, R. (2011). Study of validity and reliability of scale of attitude towards scientific research. Elementary Education Online, 10(3), 961-973.
  • Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for Intermadiate Statistics Use and Interpretation. Mahwah, New Jersey, London: Lawrence Erlbaum Associates.
  • Öztürk, M. A. (2010). An exploratory study on measuring educators’ attitudes toward educational research. Educational Research and Reviews, 5(12), 758-769.
  • Papanastasiou, E. C. (2005). Factor structure of the attitudes toward research scale. Statistics Education Research Journal, 4(1), 16-26.
  • Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30(6), 467-480.
  • Sergeeva N, Ali S. The Role of the Project Management Office (PMO) in Stimulating Innovation in Projects Initiated by Owner and Operator Organizations. Project Management Journal. 2020;51(4):440-451. doi:10.1177/8756972820919215
  • Veugelers, R. (2014). The Contribution of Academic Research to Innovation and Growth. Published by Europa Wefare Walth.
  • Wood, F. (1990). Factors influencing research performance of university academic staff. Higher Education, 19(1), 81-100.
  • Zeidner, M. (1990). Does anxiety bias scholastic aptitude test performance by gender and sociocultural group? Journal of Genetical Psychology, 150, 175–85.
  • Zhang, X. (2014). Factors that Motivate Academic Staff to Conduct Research and Influence Research Productivity in Chinese Project 211 Universities. PhD. Dissertation, The University of Canberra, Australia. Accessed on: June 16, 2019. [Online]. Available: http://www.canberra.edu.au/researchrepository/file/0814ee30-680b-401e-b059-3905b0b686cc/1/full_text.pdf

İnovasyon Artımı İçin Akademisyenlerin Araştırma ve Geliştirme Projesi Geliştirmeye Yönelik Tutumlarını Etkileyen Faktörlerin Belirlenmesi

Year 2021, Volume: 12 Issue: 45, 65 - 89, 21.05.2021
https://doi.org/10.5824/ajite.2021.02.004.x

Abstract

Ekonomik gelişme bilgiye dayalı büyüme ile sağlanabilir. Bu bağlamda, üniversiteler araştırma ve geliştirme faaliyetleri aracılığıyla bilgi üretme ve yenilik yönetimine katkı sağlama konusunda önemli bir role sahiptir. Ancak, bir çok engel, akademisyenlerin ülkelerin inovasyon yeteneklerini artırmaya yönelik projeler geliştirmelerinde zorluklar yaşamasına neden olmaktadır. Bu çalışmanın amacı, akademisyenlerin araştırma ve geliştirme projelerine yönelik tutumlarını etkileyen faktörleri belirlemektir. Bu çalışmada, temel faktörleri belirlemek için bir tutum ölçeği ve yapısal bir model geliştirilmiştir. Elde edilen sonuçlara göre, öz-değer algısı, algılanan öz yeterlilik, itibar, kaygı, takım etkileşimi ve adalet faktörleri akademisyenlerin proje geliştirmeye yönelik tutumlarını doğrudan ve önemli derecede etkilemektedir. Akademisyenlerin proje geliştirmeye yönelik tutumlarını etkileyen faktörlerin tespit edilmesi ile, üniversitelerin hedeflenen yenilikçi ve girişimci üniversiteler olmalarının önündeki engelleri yeniden düşünmeye, yenilikçiliğin artmasına katkı sağlamaya, ülke ekonomisini destekleyen ve toplumsal sorunları çözen projeler üretmeye yol açacağı öngörülmektedir.

Project Number

SBA-2018-6339

References

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Processes, 50, 179-211.
  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting behavior. Englewood Cliffs, NJ: Prentice Hall.
  • Autio, E. (1998). Evaluation of RTD in Regional Systems of Innovation. European Planning Studies, 6(2), 131–40.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Inc.
  • Bock, G., Zmud, R., Kim, Y., & Lee, J. (2005). Behavioral Intention Formation in Knowledge Sharing: Examining the Roles of Extrinsic Motivators, Social-Psychological Forces, and Organizational Climate. MIS Quarterly, 29(1), 87-111.
  • Bolin, B. L., Lee, K. H., GlenMaye, L. F., & Yoon, D. P. (2012). Impact of research orientation on attitudes toward research of social work students. Journal of Social Work Education, 48(2), 223-243.
  • Cáceres-Carrasco, F. R., Santos, F. J., & Guzmán, C. (2019). Social capital, personal values and economic development: effect on innovation. An international analysis. Innovation: The European Journal of Social Science Research, 1-26.
  • Chin, W. (1998). Commentary: Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), 7-16.
  • Cooke, P. (2002). Regional Innovation Systems: General Findings and Some new Evidence from Biotechnology Clusters. The Journal of Technology Transfer, 27(1), 133–45.
  • Creswell, J. W., & Clark, V. L. P. (2014). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi. Ankara: Anı Press.
  • Cornell University, INSEAD, and WIPO (2020). The Global Innovation Index 2020: Who Will Finance Innovation? Ithaca, Fontainebleau, and Geneva.
  • Everton, T., Galton, M., & Pell, T. (2000). Teachers' perspectives on educational research: Knowledge and context. Journal of Education for Teaching: International Research and Pedagogy, 26(2), 167-182.
  • Field, A. (2005). Discovering Statistics Using SPSS. Second Edition. London, Thousand Oaks, New Delphi: Sage Publications Ltd.
  • Fornell, C., & Larcker, D. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
  • Gardner, B. S., & Korth, S. J. (1998). A framework for learning to work in teams. Journal of Education for Business, 74(1), 28-33.
  • Gravetter, F. J., & Wallnau, L. B. (2000). Statistics for the Behavioral. Belmont, CA: Wadsworth.
  • West, G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with non-normal variables: problems and remedies. R. H. Hoyle, (Ed.), London: Stage.
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. New Jersey: Pearson Prentice Hall.
  • Hsu, C. L., & Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.
  • İlhan, N., Şekerci, A. R., Sözbilir, M., & Yıldırım, A. (2014). Eğitim Araştırmalarına Yönelik Öğretmen Tutum Ölçeğinin Geliştirilmesi: Geçerlik Ve Güvenirlik Çalışması. Batı Anadolu Eğitim Bilimleri Dergisi, 4(8), 31-56.
  • Kalaycı, N. (2008). An Application Related to Project Based Learning in Higher Education Analysis in Terms of Students Directing the Project. Science and Education, 33(147), 85-104.
  • Korkmaz, Ö., Şahin, A., & Yeşil, R. (2011). Study of validity and reliability of scale of attitude towards scientific research. Elementary Education Online, 10(3), 961-973.
  • Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for Intermadiate Statistics Use and Interpretation. Mahwah, New Jersey, London: Lawrence Erlbaum Associates.
  • Öztürk, M. A. (2010). An exploratory study on measuring educators’ attitudes toward educational research. Educational Research and Reviews, 5(12), 758-769.
  • Papanastasiou, E. C. (2005). Factor structure of the attitudes toward research scale. Statistics Education Research Journal, 4(1), 16-26.
  • Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30(6), 467-480.
  • Sergeeva N, Ali S. The Role of the Project Management Office (PMO) in Stimulating Innovation in Projects Initiated by Owner and Operator Organizations. Project Management Journal. 2020;51(4):440-451. doi:10.1177/8756972820919215
  • Veugelers, R. (2014). The Contribution of Academic Research to Innovation and Growth. Published by Europa Wefare Walth.
  • Wood, F. (1990). Factors influencing research performance of university academic staff. Higher Education, 19(1), 81-100.
  • Zeidner, M. (1990). Does anxiety bias scholastic aptitude test performance by gender and sociocultural group? Journal of Genetical Psychology, 150, 175–85.
  • Zhang, X. (2014). Factors that Motivate Academic Staff to Conduct Research and Influence Research Productivity in Chinese Project 211 Universities. PhD. Dissertation, The University of Canberra, Australia. Accessed on: June 16, 2019. [Online]. Available: http://www.canberra.edu.au/researchrepository/file/0814ee30-680b-401e-b059-3905b0b686cc/1/full_text.pdf
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Duygu Fındık Coşkunçay 0000-0002-8932-5615

Şule Erdilmen This is me 0000-0002-0886-2823

Project Number SBA-2018-6339
Publication Date May 21, 2021
Submission Date January 27, 2021
Published in Issue Year 2021 Volume: 12 Issue: 45

Cite

APA Fındık Coşkunçay, D., & Erdilmen, Ş. (2021). Investigation of The Factors Affecting the Attitudes of Academicians Towards Project Development to Enhance Innovation. AJIT-E: Academic Journal of Information Technology, 12(45), 65-89. https://doi.org/10.5824/ajite.2021.02.004.x