Research Article
BibTex RIS Cite

Doğal havalandırmalı seralarda hesaplamalı akışkanlar dinamiği tekniği kullanılarak bazı iklim parametrelerinin belirlenmesi

Year 2015, Volume: 28 Issue: 2, 71 - 76, 23.12.2015

Abstract

Çalışmanın amacı, Doğu-Batı yönünde yöneylenmiş 90° pencere açıklığına, bitkili ve bitkisiz ortamlar gibi farklı yetiştirme koşullarına sahip doğal havalandırmalı, beşik çatılı seralarda ölçülen iç hava sıcaklığı ve bağıl nem değerleri ile Hesaplamalı Akışkanlar Dinamiği (HAD) tekniği ile simüle edilen değerlerle karşılaştırmaktır. Çalışmada, Batı Akdeniz tarımsal Araştırma Enstitüsü’ndeki beşik çatılı tekil seralar materyal olarak seçilmiştir. Çalışma alanı 36º 52' K enlemi ve 30º 50' D boylamında yer almaktadır. Materyal olarak seçilen seralarda, ölçülen değerler farklı noktalara yerleştirilmiş hava sıcaklığı ve bağıl nem ölçerler kullanılarak 08:00-18:00 arasında dakikalık olarak kaydedilmiştir. Ancak bu değerler veri sayısını azaltmak için hesaplamalarda 2 saatlik ortalamalar şeklinde kullanılmıştır. Solidworks analiz yazılımı materyal olarak seçilen seraların HAD simülasyonları için kullanılmıştır. Sera içindeki hava sıcaklığı ve bağıl nem değerleri dış ortam sınır koşulları ve seranın yapısal ve fiziksel özelliklerine göre simüle edilmiştir. Daha sonra, ölçülen değerler simüle edilen değerlerle karşılaştırılmış ve bu değerlerin uyum düzeyleri belirlenmiştir. Sonuç olarak, bitkili serada ölçülen ve simüle edilen hava sıcaklığı ve bağıl nem değerlerinin hata oranları sırasıyla % 4.9 ve % 0.0 olarak bulunmuştur. Ayrıca, aynı değerler bitkisiz serada sırasıyla % 0.0 ve % 5.2 olarak bulunmuştur. Çalışma göstermiştir ki, HAD doğal havalandırmalı seralarda sera içi iklim faktörlerinin belirlenmesinde güçlü bir araç olarak kullanılabilir.

References

  • Baudoin WO, Zabeltitz C (2002) Greenhouse Constructions for Small Scale Farmers in Tropical Regions. Acta Horticulturae 578: 171-179.
  • Baytorun N (1995) Greenhouses. University of Cukurova Faculty of Agriculture Publication Number 29, Adana (in Turkish).
  • Boulard T, Baille A (1993) A Simple Greenhouse Climate Control Model Incorporating Effects of Ventilation and Evaporative Cooling. Agricultural and Forest Meteorology 65:145-157.
  • Boulard T, Draoui B (1995) Natural ventilation of a greenhouse with continuous roof vents: measurements and data analysis. Journal of Agricultural Engineering Research 61: 27-36.
  • Campen JB, Bot GPA (2003) Determination of Greenhouse-specific Aspects of Ventilation using Three-dimensional Computational Fluid Dynamics. Biosystems Engineering 84(1): 69–77.
  • Haxaire R, Boulard T, Mermier M (2000) Greenhouse Natural Ventilation by Wind Forces. Acta Horticulture 534: 31-40.
  • Kacira M, Short H, Stowell RR (1998) A CFD Evaluation of Naturally Ventilated Multi-Span Sawtooth Greenhouses. Transactions of the ASAE 41(3): 833-836.
  • Kacira M, Sase S, Okushima L (2004) Effects of Side Vents and Span Numbers on Wind-Induced Natural Ventilation of a Gothic Multi-Span Greenhouse. Japan Agricultural Research Quarterly 38(4): 227-233.
  • Lamrani MA, Boulard T, Roy JC, Jaffrin A (2001) Airflows and Temperature Patterns Induced in a Confined Greenhouse. Journal of Agricultural Engineering Research 78(1): 75-88.
  • Mistriotis A, Arcidiacono C, Picuno P, Bot GPA, Scarascia-Mugnozza G (1997a) Computational Analysis of Ventilation in Greenhouses at Zero-and Low-Wind-Speeds. Agricultural and Forest Meteorology 88: 121-135.
  • Mistriotis A, Bot GPA, Picuno P, Scarascia-Mugnozza G (1997b) Analysis of The Efficiency of Greenhouse Ventilation using Computational Fluid Dynamics. Journal of Agricultural Engineering Research 85: 217-228.
  • Nara M (1979) Studies of Air Distribution in Farm Buildings. Journal of the Society of Agricultural Structures 9(2): 17-26.
  • Ould Khaoua SA, Bournet PE, Migeon C, Boulard T, Chasseriaux G (2006) Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics. Biosystems Engineering 95(1): 83-98.
  • Ozturk HH (2008) Greenhouse Climate Technique. Istanbul, Turkey: Hasad Publishing.
  • Papadakis G, Mermier M, Meneses JF, Boulard T (1996) Measurement and Analysis of Air Exchange Rates in a Greenhouse with Continuous Roof and Side Openings. Journal of Agricultural Engineering Research 63: 219-228.
  • Teitel M, Ziskind G, Liran O, Dubovsky V, Letan R (2008) Effect of Wind Direction on Greenhouse Ventilation Rate, Airflow Patterns and Temperature Distributions. Biosystems Engineering 101(3): 351-369.
  • Zabeltitz CV (1992) Technologies for Climate Control in Greenhouses. Expert Consultation Workshop on Greenhouses in the Antalya Region 0-22: 13-17.

Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses

Year 2015, Volume: 28 Issue: 2, 71 - 76, 23.12.2015

Abstract

Aim of study was to compare the measured inner air temperature and relative humidity values with the simulated values determined with Computational Fluid Dynamics (CFD) technique in the naturally ventilated gable-roofed single glasshouses located East-West direction, having 90° window span and different growing conditions such as plant and without plants. In study, the gable roofed single glasshouses in West Mediterranean Agricultural Research Institute were chosen as material. Study area is located at the latitude of 36º 52' N and longitude of 30º 50' E. In the greenhouses selected as material, measured values were recorded every minute from 8 a.m. to 18 p.m. by using the relative humidity and air temperature meters placed in different locations. However, these values were used as average of 2 hours in calculations to reduce number of data. The Solid Works analysis software was used for CFD simulations of the greenhouses selected as material. The air temperature and relative humidity values inside the greenhouse were simulated depending on the outside ambient conditions and structural and physical properties of greenhouse. Then, the measured values were compared with the simulated values and compliance levels of these values were determined. In conclusion, the error rates of measured and simulated air temperature and relative humidity values in the greenhouse with plant were found as 4.9% and 0.0%, respectively. Additionally, the same values in the greenhouse without plant were also found as 0.0% and 5.2%, respectively. The study showed that the CFD may be used as a powerful tool for determining inner climatic factors in naturally ventilated greenhouses.

References

  • Baudoin WO, Zabeltitz C (2002) Greenhouse Constructions for Small Scale Farmers in Tropical Regions. Acta Horticulturae 578: 171-179.
  • Baytorun N (1995) Greenhouses. University of Cukurova Faculty of Agriculture Publication Number 29, Adana (in Turkish).
  • Boulard T, Baille A (1993) A Simple Greenhouse Climate Control Model Incorporating Effects of Ventilation and Evaporative Cooling. Agricultural and Forest Meteorology 65:145-157.
  • Boulard T, Draoui B (1995) Natural ventilation of a greenhouse with continuous roof vents: measurements and data analysis. Journal of Agricultural Engineering Research 61: 27-36.
  • Campen JB, Bot GPA (2003) Determination of Greenhouse-specific Aspects of Ventilation using Three-dimensional Computational Fluid Dynamics. Biosystems Engineering 84(1): 69–77.
  • Haxaire R, Boulard T, Mermier M (2000) Greenhouse Natural Ventilation by Wind Forces. Acta Horticulture 534: 31-40.
  • Kacira M, Short H, Stowell RR (1998) A CFD Evaluation of Naturally Ventilated Multi-Span Sawtooth Greenhouses. Transactions of the ASAE 41(3): 833-836.
  • Kacira M, Sase S, Okushima L (2004) Effects of Side Vents and Span Numbers on Wind-Induced Natural Ventilation of a Gothic Multi-Span Greenhouse. Japan Agricultural Research Quarterly 38(4): 227-233.
  • Lamrani MA, Boulard T, Roy JC, Jaffrin A (2001) Airflows and Temperature Patterns Induced in a Confined Greenhouse. Journal of Agricultural Engineering Research 78(1): 75-88.
  • Mistriotis A, Arcidiacono C, Picuno P, Bot GPA, Scarascia-Mugnozza G (1997a) Computational Analysis of Ventilation in Greenhouses at Zero-and Low-Wind-Speeds. Agricultural and Forest Meteorology 88: 121-135.
  • Mistriotis A, Bot GPA, Picuno P, Scarascia-Mugnozza G (1997b) Analysis of The Efficiency of Greenhouse Ventilation using Computational Fluid Dynamics. Journal of Agricultural Engineering Research 85: 217-228.
  • Nara M (1979) Studies of Air Distribution in Farm Buildings. Journal of the Society of Agricultural Structures 9(2): 17-26.
  • Ould Khaoua SA, Bournet PE, Migeon C, Boulard T, Chasseriaux G (2006) Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics. Biosystems Engineering 95(1): 83-98.
  • Ozturk HH (2008) Greenhouse Climate Technique. Istanbul, Turkey: Hasad Publishing.
  • Papadakis G, Mermier M, Meneses JF, Boulard T (1996) Measurement and Analysis of Air Exchange Rates in a Greenhouse with Continuous Roof and Side Openings. Journal of Agricultural Engineering Research 63: 219-228.
  • Teitel M, Ziskind G, Liran O, Dubovsky V, Letan R (2008) Effect of Wind Direction on Greenhouse Ventilation Rate, Airflow Patterns and Temperature Distributions. Biosystems Engineering 101(3): 351-369.
  • Zabeltitz CV (1992) Technologies for Climate Control in Greenhouses. Expert Consultation Workshop on Greenhouses in the Antalya Region 0-22: 13-17.
There are 17 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Ahmet Tezcan This is me

Kenan Buyuktas

Publication Date December 23, 2015
Published in Issue Year 2015 Volume: 28 Issue: 2

Cite

APA Tezcan, A., & Buyuktas, K. (2015). Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses. Akdeniz University Journal of the Faculty of Agriculture, 28(2), 71-76.
AMA Tezcan A, Buyuktas K. Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses. Akdeniz University Journal of the Faculty of Agriculture. December 2015;28(2):71-76.
Chicago Tezcan, Ahmet, and Kenan Buyuktas. “Determining of Some Climate Parameters Using Computational Fluid Dynamic Technique in Naturally Ventilated Greenhouses”. Akdeniz University Journal of the Faculty of Agriculture 28, no. 2 (December 2015): 71-76.
EndNote Tezcan A, Buyuktas K (December 1, 2015) Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses. Akdeniz University Journal of the Faculty of Agriculture 28 2 71–76.
IEEE A. Tezcan and K. Buyuktas, “Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses”, Akdeniz University Journal of the Faculty of Agriculture, vol. 28, no. 2, pp. 71–76, 2015.
ISNAD Tezcan, Ahmet - Buyuktas, Kenan. “Determining of Some Climate Parameters Using Computational Fluid Dynamic Technique in Naturally Ventilated Greenhouses”. Akdeniz University Journal of the Faculty of Agriculture 28/2 (December 2015), 71-76.
JAMA Tezcan A, Buyuktas K. Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses. Akdeniz University Journal of the Faculty of Agriculture. 2015;28:71–76.
MLA Tezcan, Ahmet and Kenan Buyuktas. “Determining of Some Climate Parameters Using Computational Fluid Dynamic Technique in Naturally Ventilated Greenhouses”. Akdeniz University Journal of the Faculty of Agriculture, vol. 28, no. 2, 2015, pp. 71-76.
Vancouver Tezcan A, Buyuktas K. Determining of some climate parameters using computational fluid dynamic technique in naturally ventilated greenhouses. Akdeniz University Journal of the Faculty of Agriculture. 2015;28(2):71-6.