BibTex RIS Cite

Congenital Cardiac Surgery and New Methods of Monitoring

Year 2016, Volume: 25 Issue: 1, 14 - 32, 31.03.2016

Abstract

Adequate tissue perfusion and oxygenation is fundamental for a safe anesthesia practice in congenital cardiac surgery. Despite the significant decrease in mortality after congenital cardiac surgery, the incidence of neurological complications still range between 2% and 25%. Technological improvements led to the development of many non-invasive but continuous monitoring methods. The close watching of hemodynamic and neurophysiological changes can give us the chance to early intervention of conditions like decreased cardiac output, hypoxemia and hypoperfusion. The aim of this review is to discuss the use and safety of new monitoring techniques that are taking more and more part in anesthesia practice each day and their effects on postoperative outcome.

References

  • Andropoulos DB, Stayer SA, Diaz LK, Ramamoorthy C. Neurological monitoring for congenital heart surgery. Anesth Analg.2004;99:1365–75.
  • Akpek EA. Kalp cerrahisinde serebral monitörizasyon. Anestezi Dergisi. 2008;16:117–24.
  • Mittnacht AJC, Rodriguez ‐C. DiazMultimodal neuromonitoring in pediatric cardiac anesthesia. Ann Card Anaesth. 2014;17:25-32.
  • Skowno JJ, Broadhead M. Cardiac output measurement in pediatric anesthesia. Paediatr Anaesth. 2008;18:1019–28.
  • Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW . Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002;73:1752–8.
  • Gunn JK, Beca J, Penny DJ, Horton SB, d’Udekem YA, Brizard CP et al. Amplitude‐integrated electroencephalography and brain injury in infants undergoing Norwood‐type operations. Ann Thorac Surg. 2012;93:170‐6.
  • Gunn JK, Beca J, Hunt RW, Olischar M, Shekerdemian LS. Perioperative amplitude‐integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med. 2012;38:1539‐47.
  • Rappaport LA, Wypij D, Bellinger DC, Helmers SL, Holmes GL, Barnes PD et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation.1998;97:773 ‐9.
  • Bellinger DC, Wypij D, Kuban KC, Rappaport LA, Hickey PR, Wernovsky G et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low‐flow cardiopulmonary bypass. Circulation. 1999;100:526‐32.
  • Denman WT, Swanson EL, Rosow D, Ezbicki K, Connors PD, Rosow CE. Pediatric evaluation of the bispectral index (BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in infants and children. Anesth Analg.2000;90:872-7.
  • Bard JW. The BIS monitor: a review andtechnology assessment. AANA J. 2001;69:477-83.
  • Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004;363:1757–63.
  • Kertai MD, Whitlock EL, Avidan MS. Brain monitoring with electroencephalography and the electroencephalogram-Derived bispectral index during cardiac surgery. Anesth Analg. 2012;114:533-46.
  • Laussen PC, Murphy JA, Zurakowski D, Sullivan LJ, McGowan FX Jr, Demaso DR. Bispectral index monitoring in children undergoing mild hypothermic cardiopulmonary bypass. Paediatr Anaesth. 2001;11:567–73.
  • Kussman BD, Gruber EM, Zurakowski D, Hansen DD, Sullivan LJ, Laussen PC. Bispectral index monitoring during infant cardiac surgery: relationship of BIS to the stress response and plasma fentanyl levels. Paediatr Anaesth.2001;11:663–9.
  • Davidson AJ, Czarnecki C. The bispectral index in children: comparing isoflurane and halothane. Br J Anaesth.2004;92:14–7.
  • Bennett C, Voss LJ, Barnard JP, Sleigh JW. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth Analg. 2009;109:539–50.
  • Polito A, Ricci Z, Di Chiara L, Giorni C, Iacoella C, Sanders SP, et al. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler--a systematic review of the literature. Cardiovasc Ultrasound.2006;13;4:47.
  • Yiğit T, Karadeniz Ü, Erdemli Ö, Demir A, Küçüker Ş. Yüksek riskli arkus aorta anevrizma ameliyatında üçlü serebral monitörizasyon. Göğüs Kalp Damar Anestezi ve Yoğun Bakım Derneği Dergisi. 2011;17:42-8.
  • Weyland A, Stephan H, Kazmaier S, Weyland W, Schorn B, Grune F et al. Flow velocity measurements as an index of cerebral blood flow. Anesthesiology. 1994,81:1401-10.
  • Trivedi U, Patel RL, Turtle MR, Venn GE, Chambers DJ. Relative changes in cerebral blood flow during cardiac operations using xenon-133 clearance versus ttranscranial doppler sonography. Ann Thorac Surg. 1997;63:167-74.
  • Taylor R, Burrows F, Bissonnette B. Cerebral pressure flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg. 1992;74:636-42.
  • Zimmerman A, Burrows F, Jonas R, Hickey P. The limits of detectable cerebral perfusion by transcranial doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;114:594-600.
  • Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg.2003;125:491–9.
  • Martin KK, Wigginton JB, Babikian VL, Pochay VE, Crittenden MD, Rudolph JL. Intraoperative cerebral high intensity transient signals and postoperative cognitive function: a systematic review. Am J Surg. 2009;197: 55–63.
  • Menke J, Möller G. Cerebral near-infrared spectroscopy correlates to vital parameters during cardiopulmonary bypass surgery in children. Pediatr Cardiol. 2014;35:155–63.
  • Toraman F, ErkekE, GüçlüP, Sayın J, ArıtürkC, Ökten EM et al. Near infra red spektroskopisi (NIRS) gerçekten doku saturasyonunu ölçüyor mu? Acıbadem Üniversitesi Sağlık Bilimleri Dergisi. 2013;4:115-17.
  • Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology.2000;93:947–53.
  • Kurth CD, Steven JM, Nicolson SC, Chance B, Delivoria-Papadopoulos M. Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates. Anesthesiology. 1992;77:656–61.
  • Kreeger RN, Ramamoorthy C, Nicolson SC, Ames WA, Hirsch R, Peng LF et al. Evaluation of pediatric near‐infrared cerebral oximeter for cardiac disease. Ann Thorac Surg. 2012;94:1527‐33.
  • Tortoriello TA, Stayer SA, Mott AR, McKenzie ED, Fraser CD, Andropoulos DB et al. A noninvasive estimation of mixed venous oxygen saturation using near‐infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth. 2005;15:495‐503.
  • Kussman BD, Wypij D, Laussen PC, Soul JS, Bellinger DC, DiNardo JA et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation. 2010;122:245–54.
  • Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near‐infrared spectroscopy. Semin Cardiothorac Vasc Anesth.2007;11:274‐81.
  • Fenton KN, Lessman K, Glogowski K, Fogg S, Duncan KF. Cerebral oxygen saturation does not normalize until after stage 2 single ventricle palliation. Ann Thorac Surg.2007;83:1431‐6.
  • Kurth CD, Levy WJ, McCann J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab.2002;22:335–41.
  • Holtby H, Skowno JJ, Kor DJ, Flick RP, Uezono S. New technologies in pediatric anesthesia. Paediatr Anaesth. 2012;22:952–61.
  • Durandy Y, Rubatti M, Couturier R. Near infrared spectroscopy during pediatric cardiac surgery: errors and pitfalls. Perfusion. 2011;26:441-6.
  • Gottlieb EA, Mossad EB. Limitations of cerebral oxygenation monitoring by near-infrared spectroscopy in children with cyanotic congenital heart disease and profound polycythemia. J Cardiothorac Vasc Anesth. 2014;28:347-9.
  • Clark JB, Barnes ML, Undar A, Myers JL. Multimodality neuromonitoring for pediatric cardiac surgery: our approach and a critical appraisal of the available evidence. World J Pediatr Congenit HeartSurg.2012;3:87-95.
  • Austin EH III, Edmonds HL Jr, Auden SM, Seremet V, Niznik G, Sehic A et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114:707–15.
  • Schubert S, Schmitz T, Weiss M, Nagdyman N, Huebler M, Alexi-Meskishvili V et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery:evaluation of transesophageal doppler and electric velocimetry. J Clin Monit Comput.2008;22:299-307.
  • Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med. 2001;27:201–5.
  • Chew MS, Poelaert J. Accuracy and repeatability of pediatric cardiac output measurement using doppler: 20-year review of the literature. Intensive Care Med. 2003;29:1889–94.
  • Alkanat M, Baytan ŞH. Kalp debisi ölçüm yöntemleri. Cumhuriyet Üniversitesi Tıp Fakültesi Dergisi.2008;30:89-100.
  • Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M et al. The reliability of pulse contour-derived cardiac output during hemorrhage and after vaso- pressor administration. Anesth Analg. 2007;105:107–13.
  • Pulsion medical systems. Erişim tarihi: 25.04.2015. Available from: http://www.pulsion.com/espanol/producto/plataforma/philips-modulo/configuracion/
  • LIDCO hemodynamic monitoring. Erişim tarihi: 25.04.2015. Available from: http://www.lidco.com/products/lidcoplus/userdisplay.php
  • Gazit AZ, Cooper DS. Emerging technologies. Pediatr Crit Care Med.2011;12:55-61.
  • Calamandrei M, Mirabile L, Muschetta S, Gensini GF, De Simone L, Romano SM. Assessment of cardiac output in children: A comparison between the pressure recording analytical method and doppler echocardiography. Pediatr Crit Care Med. 2008;9:310–2.
  • Raghunathan K, Bloomstone JA, McGee WT. Cardiac output measured with both esophageal doppler device and Vigileo-Flo-Trac device. Anesth Analg. 2012;114:1141–2.
  • Mavioğlu İ, Nazlıel K, Özeren M, Dolgun A, Yücel E. Açık kalp cerrahisinde termodilüsyon ve torasik elektriksel bioimpedans yöntemleriyle eşzamanlı ölçülen kardiyak output değerlerinin karşılaştırılması.Türk Göğüs Kalp Damar Cerrahisi Dergisi. 1994;2:278-80.
  • Zoremba N, Bickenbach J, Krauss B, Rossaint R, Kuhlen R, Schalte G. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand. 2007;51: 1314–9.
  • Grollmuss O, Demontoux S, Capderou A, Serraf A, Belli E. Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Med. 2012;38:1032–9.
  • Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22:113–9
  • Gueret G, Kiss G, Khaldi S, Le Jouan R, Le Grand A, Perrament Y et al: Comparison of cardiac output measurements between NICO and the pulmonary artery catheter during repeat surgery for total hip replacement. Eur J Anaesthesiol. 2007;24:1028-33.
  • Botte A, Leclerc F, Riou Y, Sadik A, Neve V, Rakza T et al. Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr Crit Care Med. 2006;7:231–6.
  • Levy RJ, Chiavacci RM, Nicolson SC, Rome JJ, Lin RJ, Helfaer MA et al. An evaluation of a noninvasive cardiac output measurement using partial carbon dioxide rebreathing in children. Anesth Analg. 2004;99:1642–7.
  • Kudsioğlu T, Tuncel Z, Coşkun F, Yapıcı N, Aydemir N, Harmandar B et al. Fallot tetrolojisi tamirinden sonra görülen aort yetmezliğinin değerlendirilmesinde intraoperatif transözefageal ekokardiyografinin rolü. Göğüs Kalp Damar Anestezi ve Yoğun Bakım Derneği Dergisi. 2012;18:18-21.
  • Kararmaz A, Kavas AD, Arslantaş MK. Kardiyak yaralanmanın ayırıcı tanısında intraoperatif transözofageal ekokardiyografi. Göğüs Kalp Damar Anestezi ve Yoğun Bakım Derneği Dergisi. 2014;20:121-24.
  • Murdoch IA, Marsh MJ, Tibby SM, McLuckie A. Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr.1995;84:761–64.
  • Tibby SM, Hatherill M, Murdoch IA. Use of transesophageal doppler ultrasonography in ventilated pediatric patients:derivation of cardiac output. Crit Care Med.2000;28:2045–50

Konjenital Kalp Cerrahisi ve Yeni Monitorizasyon Yöntemleri

Year 2016, Volume: 25 Issue: 1, 14 - 32, 31.03.2016

Abstract

Konjenital kalp cerrahisinde güvenli bir anestezi yaklaşımı için yeterli doku perfüzyonu ve oksijenasyonun sağlanması şarttır. Günümüzde konjenital kalp cerrahisinde mortalite önemli ölçüde azalmış olsa da, nörolojik komplikasyon insidansı hala %2 ile %25 arasında değişmektedir. Teknolojik gelişmelerle birlikte, pek çok non-invaziv ama devamlı monitorizasyon yöntemi geliştirilmiştir. Nörofizyolojik ve hemodinamik değişikliklerin takibi kardiyak debinin düşmesi, hipoperfüzyon ve hipoksemi gibi durumlarda erken müdahale şansı verebilir. Bu derlemede; konjenital kalp cerrahisinde perioperatif dönemde gün geçtikçe daha da fazla yer bulan yeni monitorizasyon yöntemlerinin kullanım alanları, güvenilirliği ve postoperatif sonuçlara etkisini tartışmak amaçlanmıştır.

References

  • Andropoulos DB, Stayer SA, Diaz LK, Ramamoorthy C. Neurological monitoring for congenital heart surgery. Anesth Analg.2004;99:1365–75.
  • Akpek EA. Kalp cerrahisinde serebral monitörizasyon. Anestezi Dergisi. 2008;16:117–24.
  • Mittnacht AJC, Rodriguez ‐C. DiazMultimodal neuromonitoring in pediatric cardiac anesthesia. Ann Card Anaesth. 2014;17:25-32.
  • Skowno JJ, Broadhead M. Cardiac output measurement in pediatric anesthesia. Paediatr Anaesth. 2008;18:1019–28.
  • Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW . Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002;73:1752–8.
  • Gunn JK, Beca J, Penny DJ, Horton SB, d’Udekem YA, Brizard CP et al. Amplitude‐integrated electroencephalography and brain injury in infants undergoing Norwood‐type operations. Ann Thorac Surg. 2012;93:170‐6.
  • Gunn JK, Beca J, Hunt RW, Olischar M, Shekerdemian LS. Perioperative amplitude‐integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med. 2012;38:1539‐47.
  • Rappaport LA, Wypij D, Bellinger DC, Helmers SL, Holmes GL, Barnes PD et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation.1998;97:773 ‐9.
  • Bellinger DC, Wypij D, Kuban KC, Rappaport LA, Hickey PR, Wernovsky G et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low‐flow cardiopulmonary bypass. Circulation. 1999;100:526‐32.
  • Denman WT, Swanson EL, Rosow D, Ezbicki K, Connors PD, Rosow CE. Pediatric evaluation of the bispectral index (BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in infants and children. Anesth Analg.2000;90:872-7.
  • Bard JW. The BIS monitor: a review andtechnology assessment. AANA J. 2001;69:477-83.
  • Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004;363:1757–63.
  • Kertai MD, Whitlock EL, Avidan MS. Brain monitoring with electroencephalography and the electroencephalogram-Derived bispectral index during cardiac surgery. Anesth Analg. 2012;114:533-46.
  • Laussen PC, Murphy JA, Zurakowski D, Sullivan LJ, McGowan FX Jr, Demaso DR. Bispectral index monitoring in children undergoing mild hypothermic cardiopulmonary bypass. Paediatr Anaesth. 2001;11:567–73.
  • Kussman BD, Gruber EM, Zurakowski D, Hansen DD, Sullivan LJ, Laussen PC. Bispectral index monitoring during infant cardiac surgery: relationship of BIS to the stress response and plasma fentanyl levels. Paediatr Anaesth.2001;11:663–9.
  • Davidson AJ, Czarnecki C. The bispectral index in children: comparing isoflurane and halothane. Br J Anaesth.2004;92:14–7.
  • Bennett C, Voss LJ, Barnard JP, Sleigh JW. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth Analg. 2009;109:539–50.
  • Polito A, Ricci Z, Di Chiara L, Giorni C, Iacoella C, Sanders SP, et al. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler--a systematic review of the literature. Cardiovasc Ultrasound.2006;13;4:47.
  • Yiğit T, Karadeniz Ü, Erdemli Ö, Demir A, Küçüker Ş. Yüksek riskli arkus aorta anevrizma ameliyatında üçlü serebral monitörizasyon. Göğüs Kalp Damar Anestezi ve Yoğun Bakım Derneği Dergisi. 2011;17:42-8.
  • Weyland A, Stephan H, Kazmaier S, Weyland W, Schorn B, Grune F et al. Flow velocity measurements as an index of cerebral blood flow. Anesthesiology. 1994,81:1401-10.
  • Trivedi U, Patel RL, Turtle MR, Venn GE, Chambers DJ. Relative changes in cerebral blood flow during cardiac operations using xenon-133 clearance versus ttranscranial doppler sonography. Ann Thorac Surg. 1997;63:167-74.
  • Taylor R, Burrows F, Bissonnette B. Cerebral pressure flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg. 1992;74:636-42.
  • Zimmerman A, Burrows F, Jonas R, Hickey P. The limits of detectable cerebral perfusion by transcranial doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;114:594-600.
  • Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg.2003;125:491–9.
  • Martin KK, Wigginton JB, Babikian VL, Pochay VE, Crittenden MD, Rudolph JL. Intraoperative cerebral high intensity transient signals and postoperative cognitive function: a systematic review. Am J Surg. 2009;197: 55–63.
  • Menke J, Möller G. Cerebral near-infrared spectroscopy correlates to vital parameters during cardiopulmonary bypass surgery in children. Pediatr Cardiol. 2014;35:155–63.
  • Toraman F, ErkekE, GüçlüP, Sayın J, ArıtürkC, Ökten EM et al. Near infra red spektroskopisi (NIRS) gerçekten doku saturasyonunu ölçüyor mu? Acıbadem Üniversitesi Sağlık Bilimleri Dergisi. 2013;4:115-17.
  • Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology.2000;93:947–53.
  • Kurth CD, Steven JM, Nicolson SC, Chance B, Delivoria-Papadopoulos M. Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates. Anesthesiology. 1992;77:656–61.
  • Kreeger RN, Ramamoorthy C, Nicolson SC, Ames WA, Hirsch R, Peng LF et al. Evaluation of pediatric near‐infrared cerebral oximeter for cardiac disease. Ann Thorac Surg. 2012;94:1527‐33.
  • Tortoriello TA, Stayer SA, Mott AR, McKenzie ED, Fraser CD, Andropoulos DB et al. A noninvasive estimation of mixed venous oxygen saturation using near‐infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth. 2005;15:495‐503.
  • Kussman BD, Wypij D, Laussen PC, Soul JS, Bellinger DC, DiNardo JA et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation. 2010;122:245–54.
  • Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near‐infrared spectroscopy. Semin Cardiothorac Vasc Anesth.2007;11:274‐81.
  • Fenton KN, Lessman K, Glogowski K, Fogg S, Duncan KF. Cerebral oxygen saturation does not normalize until after stage 2 single ventricle palliation. Ann Thorac Surg.2007;83:1431‐6.
  • Kurth CD, Levy WJ, McCann J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab.2002;22:335–41.
  • Holtby H, Skowno JJ, Kor DJ, Flick RP, Uezono S. New technologies in pediatric anesthesia. Paediatr Anaesth. 2012;22:952–61.
  • Durandy Y, Rubatti M, Couturier R. Near infrared spectroscopy during pediatric cardiac surgery: errors and pitfalls. Perfusion. 2011;26:441-6.
  • Gottlieb EA, Mossad EB. Limitations of cerebral oxygenation monitoring by near-infrared spectroscopy in children with cyanotic congenital heart disease and profound polycythemia. J Cardiothorac Vasc Anesth. 2014;28:347-9.
  • Clark JB, Barnes ML, Undar A, Myers JL. Multimodality neuromonitoring for pediatric cardiac surgery: our approach and a critical appraisal of the available evidence. World J Pediatr Congenit HeartSurg.2012;3:87-95.
  • Austin EH III, Edmonds HL Jr, Auden SM, Seremet V, Niznik G, Sehic A et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114:707–15.
  • Schubert S, Schmitz T, Weiss M, Nagdyman N, Huebler M, Alexi-Meskishvili V et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery:evaluation of transesophageal doppler and electric velocimetry. J Clin Monit Comput.2008;22:299-307.
  • Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med. 2001;27:201–5.
  • Chew MS, Poelaert J. Accuracy and repeatability of pediatric cardiac output measurement using doppler: 20-year review of the literature. Intensive Care Med. 2003;29:1889–94.
  • Alkanat M, Baytan ŞH. Kalp debisi ölçüm yöntemleri. Cumhuriyet Üniversitesi Tıp Fakültesi Dergisi.2008;30:89-100.
  • Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M et al. The reliability of pulse contour-derived cardiac output during hemorrhage and after vaso- pressor administration. Anesth Analg. 2007;105:107–13.
  • Pulsion medical systems. Erişim tarihi: 25.04.2015. Available from: http://www.pulsion.com/espanol/producto/plataforma/philips-modulo/configuracion/
  • LIDCO hemodynamic monitoring. Erişim tarihi: 25.04.2015. Available from: http://www.lidco.com/products/lidcoplus/userdisplay.php
  • Gazit AZ, Cooper DS. Emerging technologies. Pediatr Crit Care Med.2011;12:55-61.
  • Calamandrei M, Mirabile L, Muschetta S, Gensini GF, De Simone L, Romano SM. Assessment of cardiac output in children: A comparison between the pressure recording analytical method and doppler echocardiography. Pediatr Crit Care Med. 2008;9:310–2.
  • Raghunathan K, Bloomstone JA, McGee WT. Cardiac output measured with both esophageal doppler device and Vigileo-Flo-Trac device. Anesth Analg. 2012;114:1141–2.
  • Mavioğlu İ, Nazlıel K, Özeren M, Dolgun A, Yücel E. Açık kalp cerrahisinde termodilüsyon ve torasik elektriksel bioimpedans yöntemleriyle eşzamanlı ölçülen kardiyak output değerlerinin karşılaştırılması.Türk Göğüs Kalp Damar Cerrahisi Dergisi. 1994;2:278-80.
  • Zoremba N, Bickenbach J, Krauss B, Rossaint R, Kuhlen R, Schalte G. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand. 2007;51: 1314–9.
  • Grollmuss O, Demontoux S, Capderou A, Serraf A, Belli E. Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Med. 2012;38:1032–9.
  • Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22:113–9
  • Gueret G, Kiss G, Khaldi S, Le Jouan R, Le Grand A, Perrament Y et al: Comparison of cardiac output measurements between NICO and the pulmonary artery catheter during repeat surgery for total hip replacement. Eur J Anaesthesiol. 2007;24:1028-33.
  • Botte A, Leclerc F, Riou Y, Sadik A, Neve V, Rakza T et al. Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr Crit Care Med. 2006;7:231–6.
  • Levy RJ, Chiavacci RM, Nicolson SC, Rome JJ, Lin RJ, Helfaer MA et al. An evaluation of a noninvasive cardiac output measurement using partial carbon dioxide rebreathing in children. Anesth Analg. 2004;99:1642–7.
  • Kudsioğlu T, Tuncel Z, Coşkun F, Yapıcı N, Aydemir N, Harmandar B et al. Fallot tetrolojisi tamirinden sonra görülen aort yetmezliğinin değerlendirilmesinde intraoperatif transözefageal ekokardiyografinin rolü. Göğüs Kalp Damar Anestezi ve Yoğun Bakım Derneği Dergisi. 2012;18:18-21.
  • Kararmaz A, Kavas AD, Arslantaş MK. Kardiyak yaralanmanın ayırıcı tanısında intraoperatif transözofageal ekokardiyografi. Göğüs Kalp Damar Anestezi ve Yoğun Bakım Derneği Dergisi. 2014;20:121-24.
  • Murdoch IA, Marsh MJ, Tibby SM, McLuckie A. Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr.1995;84:761–64.
  • Tibby SM, Hatherill M, Murdoch IA. Use of transesophageal doppler ultrasonography in ventilated pediatric patients:derivation of cardiac output. Crit Care Med.2000;28:2045–50
There are 61 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Aysun Yılbaş This is me

Başak Akça This is me

Meral Kanbak This is me

Publication Date March 31, 2016
Published in Issue Year 2016 Volume: 25 Issue: 1

Cite

AMA Yılbaş A, Akça B, Kanbak M. Konjenital Kalp Cerrahisi ve Yeni Monitorizasyon Yöntemleri. aktd. February 2016;25(1):14-32. doi:10.17827/aktd.73285