Yıl 2010,
Cilt: 19 Sayı: 4, 206 - 219, 01.12.2010
Pınar Yılgör Huri
Nesrin Hasırcı
Vasıf Hasırcı
Öz
The requirement for new bone to replace or restore the function of damaged or lost bone is a major clinical and social need. Bone tissue engineering has been considered as the alternative strategy to produce artificial bone grafts. The strategy of the method is to combine progenitor or mature cells isolated from desired cell source with biodegradable scaffolds to produce 3-D viable artificial bone in the laboratory conditions. Incorporation of growth factors that are regulators of cellular activities in vivo into the construct would protect these fragile molecules from degradation while sustaining their local concentration over a given period of time at the target site. Therefore, activities have been concentrated on the development of multi functional tissue engineering scaffolds capable of delivering the required bioactive agents to initiate and control cellular activities. This article reviews the recent developments in the production of functional artificial bone constructs via tissue engineering technique.
Kaynakça
- Nystrom E, Ahlqvist J, Legrell PE et al. Bone graft remodelling and implant success rate in the treatment of the severely resorbed maxilla: a 5-year longitudinal study. Int J Oral Maxillofac Surg 2002; 31(2): 158-164.
- Younger EM, Chapman M. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3: 192-195.
- Mankin HJ, Springfield DS, Gebhardt BC et al. Current status of allografting for bone tumors. Orthopedics 1992; 15: 1147-1154.
- Tomford W, Springfield DS, Mankin HJ. Fresh and frozen articular cartilage allografts. Orthopedics 1992; 15: 1183-1188.
- Ohlendorf C, Tomford W, Mankin HJ. Chondrocyte survival in cryopreserved osteochondral articular cartilage. J Orthop Res 1996; 14: 413-416.
- Peterson B, Whang PG, Iglesias R et. al. Osteoinductivity of Commercially Available Demineralized Bone Matrix. J Bone Joint Surg Am 2004; 86: 2243-2250.
- Navarro M, Michiardi A, Castano O, et.al. Biomaterials in orthopaedics. R Soc Interface 2008; 5: 1137–1158.
- Hench LL. Biomaterials. Science 1980; 208: 826–831.
- Fisher J, Dowson D. Tribology of total artificial joints. Proc Inst Mech Eng J Eng Med 1991; 205: 73–79.
- Sutula LC, Collier JP, Saum KA, et. al. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop 1995; 319: 28–40.
- Kinoshita Y, Kobayashi M, Hidaka T, et. al. Reconstruction of mandibular continuity defects in dogs using poly (L- lactide) mesh and autogenic particulate cancellous bone and marrow: Preliminary report. J Oral Maxillofac Surg 1997; 55(7): 718-724.
- Kellomäki M, Niiranen H, Puumanen K, et. al. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 2000; 21(24): 2495-2505.
- Goldstein AS, Zhu G, Morris GE, et. al. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 1999; 5(5): 421-433.
- Yilgor P, Sousa RA, Reis RL, et. al. 3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering. Macromol Symp 2008;269:92-99.
- Costa ROR, Pereira MM, Lameiras FS, et. al. In vitro study of apatite precipitation on poly(2- hydroxyethyl methacrylate)-silica hybrids with controlled surface areas. Key Engineering Materials 2003; 240-242: 195-198.
- Vrana NE, Builles N, Justin V, et. al. Development of a reconstructed cornea from collagen- chondroitin sulfate foams and human cell cultures. Investigative Ophthalmology and Visual Science 2008; 49(12):5325-5331.
- Lisignoli G, Fini M, Giavaresi G, et al. Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials 2002; 23(4): 1043-1051.
- Meinel L, Fajardo R, Hofmann S, et. al. Silk implants for the healing of critical size bone defects. Bone 2005; 37(5): 688-698.
- Wang L, Shelton RM, Cooper PR, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 2003; 24(20): 3475-3481
- Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: In vitro studies. Biomaterials 2002; 23(6): 1471-1478.
- Yilgor P, Tuzlakoglu K, Reis RL, et. al. Incorporation of a Sequential BMP-2/BMP-7 Delivery System into Chitosan-Based Scaffolds for Bone Tissue Engineering. Biomaterials 2009; 30: 3551–3559.
- Kose GT, Kenar H, Hasirci N, et. al. Macroporous poly(3-hydroxybutyrate-co-3- hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 2003; 24(11): 1949- 1958.
- Hench L, Polak J. Third generation biomedical materials. Science 2002; 295: 1014–1017.
- Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13: 81–88.
- Caplan AL. Method for enhancing the implantation and differentiation of marrow-derived mesenchymal stem cells. 1993. US patent 5197985.
- Nefussi JR, Brami G, Modrowski D, et. al. Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem 1997; 45: 493–503.
- Spaans CJ, Belgraver VW, Rienstra O, et al. Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee- joint meniscus. Biomaterials 2000; 21: 2453–2460.
- Boccaccini AR, Roether JA, Hench LL, et. al. Composites approach to tissue engineering. Ceram Eng Sci Proc 2002; 23: 805–816.
- Kenar H, Kose GT, Hasirci V. Tissue Engineering Of Bone On Micropatterned Biodegradable Polyester Films. Biomaterials 2006; 27: 885–95.
- Kose GT, Korkusuz F, Korkusuz P, et al. In vivo tissue engineering of bone using poly(3- hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds. Tissue Eng 2004; 10(7- 8): 1234-1250.
- Ber S, Kose GT, Hasirci V. Bone tissue engineering on patterned collagen films: An in vitro study. Biomaterials 2005; 26(14): 1977-1986.
- Hasırcı V, Vrana E, Zorlutuna P, et. al. Nanobiomaterials: a review of the existing science
- and technology, and new approaches. J Biomater Sci Polymer Edn 2006; 17 (11): 1241– 1268.
- Ashammakhi N, Ndreu A, Piras AM, et. al. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotech. 2007;7(3):862-882.
- Tuzlakoglu K, Reis RL. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. J Mater Sci Mater Med. 2007;18(7):1279-1286.
- Murphy WL, Peters MC, Kohn DH, et. al. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2000;21(24):2521-2527.
- Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-325.
- Tuzlakoglu K, Alves CM, Mano JF, et. al. Production and characterization of chitosan fibers and 3D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci 2004; 4:811-819.
- Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004; 22(7): 354-362.
- Hsu HP, Zanella JM, Peckham SM, et.al. Comparing Ectopic Bone Growth Induced by rhBMP-2 on an Absorbable Collagen Sponge in Rat and Rabbit Models. J Orthop Res 2006;24:1660–1669.
- Jansen JA, Vehof JWM, Ruhe PQ, et. al. Growth Factor-Loaded Scaffolds For Bone Engineering. J Contr Release 2005;101:127–136.
- Keskin DS, Tezcaner A, Korkusuz P, et. al. Collagen–chondroitin sulfate-based PLLA–SAIB- coated rhBMP-2 delivery system for bone repair. Biomaterials 2005;26:4023-4034.
- White AP, Vaccaro AR, Hall JA, et. al. Clinical applications of BMP-7/OP-1 in fractures, non- unions and spinal fusion. Int Orthop 2007; 31: 735-741.
- Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002; 17: 513–520.
- Simmons CA, Alsberg E, Hsiong S, et. al. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004;35:562-569.
- Patel ZS, Young S, Tabata Y, et. al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008;43:931–940.
- Raiche AT, Puleo DA. In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 2004;25:677–685.
- Basmanav FB, Kose GT, Hasirci V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 2008; 29: 4195–4204.
- Yilgor P, Hasirci N, Hasirci V. Sequential BMP-2/BMP-7 Delivery from Polyester Nanocapsules. J Biomed Mater Res 2010; 93A: 528-536.
- Yilgor P, Sousa RA, Reis RL, et. al. Effect of Scaffold Architecture and BMP-2/BMP-7 Delivery on in vitro Bone Regeneration. J Mater Sci Mater Med 2010; 21; 2999-3008.
Yıl 2010,
Cilt: 19 Sayı: 4, 206 - 219, 01.12.2010
Pınar Yılgör Huri
Nesrin Hasırcı
Vasıf Hasırcı
Öz
Kemik dokusu zedelendiği veya kayba uğradığında, hasarlı bölgenin tamir edilmesinde ya da tamamen yenilenmesinde kullanılmak amacıyla laboratuvarda yapay kemik dokusu üretebilmek günümüzün önemli tıbbi ve sosyal ihtiyaçlarından birisidir. Kemik doku mühendisliği, yapay kemik üretimi için günümüzün en önemli seçeneklerden biri olarak görülmektedir. Bu yöntemde temel yaklaşım, amaca uygun bir kaynaktan izole edilen hücreler ile biyobozunur polimerik doku desteklerinin birlikte kullanılmasıyla laboratuvar ortamında üç boyutlu canlı kemik dokusunun oluşturulmasıdır. Vücut içerisinde hücre aktivitelerinin düzenleyicisi olan büyüme faktörlerinin polimerik yapıya katılması ise, hem kırılgan moleküller olan büyüme faktörlerini bozunmadan koruyacak hem de defekt bölgesinde lokalize edecek ve zamana bağlı bir şekilde ortama sağlanmalarını gerçekleştirecektir. Dolayısıyla, kemik doku mühendisliği uygulamalarında doku desteği yapı içerisine biyolojik olarak etkin biyoaktif moleküllerin eklenmesi büyük önem kazanmış ve çalışmalar bu yönde ilerlemeye başlamıştır. Bu makalede doku mühendisliği yöntemiyle fonksiyonel yapay kemik dokusu oluşturulması konusundaki son gelişmeler ele alınmıştır.
Kaynakça
- Nystrom E, Ahlqvist J, Legrell PE et al. Bone graft remodelling and implant success rate in the treatment of the severely resorbed maxilla: a 5-year longitudinal study. Int J Oral Maxillofac Surg 2002; 31(2): 158-164.
- Younger EM, Chapman M. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3: 192-195.
- Mankin HJ, Springfield DS, Gebhardt BC et al. Current status of allografting for bone tumors. Orthopedics 1992; 15: 1147-1154.
- Tomford W, Springfield DS, Mankin HJ. Fresh and frozen articular cartilage allografts. Orthopedics 1992; 15: 1183-1188.
- Ohlendorf C, Tomford W, Mankin HJ. Chondrocyte survival in cryopreserved osteochondral articular cartilage. J Orthop Res 1996; 14: 413-416.
- Peterson B, Whang PG, Iglesias R et. al. Osteoinductivity of Commercially Available Demineralized Bone Matrix. J Bone Joint Surg Am 2004; 86: 2243-2250.
- Navarro M, Michiardi A, Castano O, et.al. Biomaterials in orthopaedics. R Soc Interface 2008; 5: 1137–1158.
- Hench LL. Biomaterials. Science 1980; 208: 826–831.
- Fisher J, Dowson D. Tribology of total artificial joints. Proc Inst Mech Eng J Eng Med 1991; 205: 73–79.
- Sutula LC, Collier JP, Saum KA, et. al. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop 1995; 319: 28–40.
- Kinoshita Y, Kobayashi M, Hidaka T, et. al. Reconstruction of mandibular continuity defects in dogs using poly (L- lactide) mesh and autogenic particulate cancellous bone and marrow: Preliminary report. J Oral Maxillofac Surg 1997; 55(7): 718-724.
- Kellomäki M, Niiranen H, Puumanen K, et. al. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 2000; 21(24): 2495-2505.
- Goldstein AS, Zhu G, Morris GE, et. al. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 1999; 5(5): 421-433.
- Yilgor P, Sousa RA, Reis RL, et. al. 3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering. Macromol Symp 2008;269:92-99.
- Costa ROR, Pereira MM, Lameiras FS, et. al. In vitro study of apatite precipitation on poly(2- hydroxyethyl methacrylate)-silica hybrids with controlled surface areas. Key Engineering Materials 2003; 240-242: 195-198.
- Vrana NE, Builles N, Justin V, et. al. Development of a reconstructed cornea from collagen- chondroitin sulfate foams and human cell cultures. Investigative Ophthalmology and Visual Science 2008; 49(12):5325-5331.
- Lisignoli G, Fini M, Giavaresi G, et al. Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials 2002; 23(4): 1043-1051.
- Meinel L, Fajardo R, Hofmann S, et. al. Silk implants for the healing of critical size bone defects. Bone 2005; 37(5): 688-698.
- Wang L, Shelton RM, Cooper PR, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 2003; 24(20): 3475-3481
- Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: In vitro studies. Biomaterials 2002; 23(6): 1471-1478.
- Yilgor P, Tuzlakoglu K, Reis RL, et. al. Incorporation of a Sequential BMP-2/BMP-7 Delivery System into Chitosan-Based Scaffolds for Bone Tissue Engineering. Biomaterials 2009; 30: 3551–3559.
- Kose GT, Kenar H, Hasirci N, et. al. Macroporous poly(3-hydroxybutyrate-co-3- hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 2003; 24(11): 1949- 1958.
- Hench L, Polak J. Third generation biomedical materials. Science 2002; 295: 1014–1017.
- Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13: 81–88.
- Caplan AL. Method for enhancing the implantation and differentiation of marrow-derived mesenchymal stem cells. 1993. US patent 5197985.
- Nefussi JR, Brami G, Modrowski D, et. al. Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem 1997; 45: 493–503.
- Spaans CJ, Belgraver VW, Rienstra O, et al. Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee- joint meniscus. Biomaterials 2000; 21: 2453–2460.
- Boccaccini AR, Roether JA, Hench LL, et. al. Composites approach to tissue engineering. Ceram Eng Sci Proc 2002; 23: 805–816.
- Kenar H, Kose GT, Hasirci V. Tissue Engineering Of Bone On Micropatterned Biodegradable Polyester Films. Biomaterials 2006; 27: 885–95.
- Kose GT, Korkusuz F, Korkusuz P, et al. In vivo tissue engineering of bone using poly(3- hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds. Tissue Eng 2004; 10(7- 8): 1234-1250.
- Ber S, Kose GT, Hasirci V. Bone tissue engineering on patterned collagen films: An in vitro study. Biomaterials 2005; 26(14): 1977-1986.
- Hasırcı V, Vrana E, Zorlutuna P, et. al. Nanobiomaterials: a review of the existing science
- and technology, and new approaches. J Biomater Sci Polymer Edn 2006; 17 (11): 1241– 1268.
- Ashammakhi N, Ndreu A, Piras AM, et. al. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotech. 2007;7(3):862-882.
- Tuzlakoglu K, Reis RL. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. J Mater Sci Mater Med. 2007;18(7):1279-1286.
- Murphy WL, Peters MC, Kohn DH, et. al. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2000;21(24):2521-2527.
- Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-325.
- Tuzlakoglu K, Alves CM, Mano JF, et. al. Production and characterization of chitosan fibers and 3D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci 2004; 4:811-819.
- Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004; 22(7): 354-362.
- Hsu HP, Zanella JM, Peckham SM, et.al. Comparing Ectopic Bone Growth Induced by rhBMP-2 on an Absorbable Collagen Sponge in Rat and Rabbit Models. J Orthop Res 2006;24:1660–1669.
- Jansen JA, Vehof JWM, Ruhe PQ, et. al. Growth Factor-Loaded Scaffolds For Bone Engineering. J Contr Release 2005;101:127–136.
- Keskin DS, Tezcaner A, Korkusuz P, et. al. Collagen–chondroitin sulfate-based PLLA–SAIB- coated rhBMP-2 delivery system for bone repair. Biomaterials 2005;26:4023-4034.
- White AP, Vaccaro AR, Hall JA, et. al. Clinical applications of BMP-7/OP-1 in fractures, non- unions and spinal fusion. Int Orthop 2007; 31: 735-741.
- Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002; 17: 513–520.
- Simmons CA, Alsberg E, Hsiong S, et. al. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004;35:562-569.
- Patel ZS, Young S, Tabata Y, et. al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008;43:931–940.
- Raiche AT, Puleo DA. In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 2004;25:677–685.
- Basmanav FB, Kose GT, Hasirci V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 2008; 29: 4195–4204.
- Yilgor P, Hasirci N, Hasirci V. Sequential BMP-2/BMP-7 Delivery from Polyester Nanocapsules. J Biomed Mater Res 2010; 93A: 528-536.
- Yilgor P, Sousa RA, Reis RL, et. al. Effect of Scaffold Architecture and BMP-2/BMP-7 Delivery on in vitro Bone Regeneration. J Mater Sci Mater Med 2010; 21; 2999-3008.