Review
BibTex RIS Cite

Kanser Tedavisi İçin MikroRNA’ların Çok İşlevli Nano-taşıyıcılar İle Dağıtımı

Year 2023, Volume: 32 Issue: 1, 52 - 60, 31.03.2023
https://doi.org/10.17827/aktd.1181394

Abstract

Hücre proliferasyonu ve apoptozis gibi kanserden sorumlu biyolojik süreçlerde etkili olan miRNA’lar, farklı kanser türleri ve evrelerinin teşhis ve tedavisinde yeni biyobelirteçler olarak işlev görür. Bunun yanı sıra bazı miRNA’ların onkogen ve tümör baskılayıcı özelliği nanoteknoloji ile entegre edilmesiyle kanser oluşumunu engeller. Son yıllarda miRNA’ların kanser tedavisinde kullanılmasını sağlayan diğer bir yaklaşım ise nano-taşıyıcılardır. İlaçlar, peptitler veya genler gibi aktif bileşikleri taşımak için geliştirilen bu nano-taşıyıcıların kanser tedavisinde kullanımları umut vadetmektedir. Bu derleme, miRNA dağıtımında kullanılan nano-taşıyıcı türleri hakkında kısa bir bilgi sunmaktadır. Ayrıca nanoteknolojideki gelişmelerle birlikte miRNA’ların kanser teşhis ve tedavisinde kullanımın yanısıra gen susturma mekanizması olan RNA interferansından kısaca bahsedilmektedir.

References

  • 1.Bodur E, Demirpençe E. Kodlamayan RNA’lar ve gen susturumu [Non-coding RNAs and gene silencing]. Hacettepe Tıp Derg. 2010;41:82-89.
  • 2.Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363-366.
  • 3.Ünal E, Tahmaz I, Toroslu İH, Serin GC, Yılmaz A. Post-Transkripsiyonel Gen Susturulması ve Kullanım Alanları.
  • 4.Mozafari MR. Nanomaterials and nanosystems for biomedical applications. Springer Science & Business Media. 2007.
  • 5.Caban S, Aytekin E, Sahin A, Capan Y. Nanosystems for drug delivery. OA Drug Design & Delivery 2014;18:2(1):2.
  • 6.Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nature reviews Molecular cell biology. 2003;4:457-467.
  • 7. National Cancer Institute (NCI). Available from: https://www.cancer.gov/nano/cancer-nanotechnology/benefits. Accessed: 12 June 2022
  • 8.Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al.. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the national academy of Sciences. 2002;99:15524-15529.
  • 9.Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri, S et al.. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Ulusal Bilimler Akademisi Bildiriler Kitabı. 2004;101:2999-3004.
  • 10.Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP, & James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular cancer Research. 2003;1:882-891.
  • 11.Saydam F, Değirmenci İ, Güneş HV. MikroRNA'lar ve kanser. Dicle Tıp Derg.2011;38.
  • 12. Banno K, Yanokura M, Kisu I, Yamagami W, Susumu N, Aoki D. MicroRNAs in endometrial cancer. International journal of clinical oncology. 2013;18:186-192.
  • 13.Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al.. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences. 2005;102: 13944-13949.
  • 14.Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al.. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635-647.
  • 15. Karagün BŞ, Antmen B, Kılınç Y. Mikro RNA ve kanser. Türk Klinik Biyokimya Derg. 2014;12:45-56. 16.Oylar Ö, Tekin İ. Kanserin teşhis ve tedavisinde nanoteknolojinin önemi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi.2011;16.
  • 17.Auyang YS. Cancer causes and cancer research on many levels of complexity. Creat. Technol. 2006;1-15.
  • 18.Singh KK. Nanotechnology in cancer detection and treatment. Technology in Cancer Research & Treatment.2005;4: 583-583.
  • 19.Sathe TR, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Analytical Chemistry. 2006;78:5627-5632.
  • 20.Kumar B, Yadav PR, Goel HC, Rizvi M. LATEST DEVELOPMENTS IN CANCER TREATMENT WITH NANOTECHNOLOGY. Digest Journal of Nanomaterials & Biostructures (DJNB). 2009;4.
  • 21.Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert opinion on drug delivery.2006;3:311-324.
  • 22.Marangoz Ö, Yavuz O. Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri. Turk Hij Den Biyol Derg. 2020;77:509-526
  • 23.Ayata O, Haberal KC, Or G, Polat C, Turgut A. Lipozomların Tıpta Kullanımı. Başkent Tıp Fakültesi.2012.
  • 24.Paszko E, Senge MO. Immunoliposomes. Current medicinal chemistry. 2012;19:5239-5277.
  • 25.Yang G, Yin B. Therapeutic effects of long-circulating miR-135a-containing cationic immunoliposomes against gallbladder cancer. Bilimsel raporlar. 2017;7:1-15.
  • 26.Mastrobattista E, Storm G, Van Bloois L, Reszka R, Bloemen PGM, Crommelin DJA et al.. Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1999;1419:353-363.
  • 27.İstanbul Üniversitesi. Available from: https://avesis.istanbul.edu.tr Accessed: 20 June 2022. 28.Yıldız TeknikÜniversitesi. Available from: https://avesis.yildiz.edu.tr Accessed: 20 June 2022.
  • 29.Pedrosa LRC, Ten Hagen TL, Süss R, van Hell A, Eggermont AM, Verheij M et al.. Short-chain glycoceramides promote intracellular mitoxantrone delivery from novel nanoliposomes into breast cancer cells. Pharmaceutical Research. 2015;32:1354-1367.
  • 30.Sheikhpour M, Sadeghizadeh M, Yazdian F, Mansoori A, Asadi H, Movafagh A et al.. Co-Administration of Curcumin and Bromocriptine Nano-liposomes for Induction of Apoptosis in Lung Cancer Cells. Iran Biomed J. 2020;24:24-9.
  • 31.Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Molecular pharmaceutics.2011;8:1381-1389.
  • 32.Jiang Q, Yuan Y, Gong Y, Luo X, Su X, Hu X et al.. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. Journal of Cancer Research and Clinical Oncology. 2019;145:2951-2967.
  • 33.Wayne EC, Long C, Haney MJ, Batrakova EV, Leisner TM, Parise LV et al.. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer. Advanced Science. 2019;6:1900582.
  • 34.Chu CJ, Szoka, FC pH'a duyarlı lipozomlar. Lipozom Araştırmaları Dergisi. 1994;4:361-395.
  • 35.Juang V, Chang CH, Wang CS, Wang HE, Lo YL. pH‐responsive PEG‐shedding and Targeting peptide‐modified nanoparticles for dual‐delivery of Irinotecan and microRNA to enhance tumor‐specific therapy. Small. 2019;15:1903296.
  • 36.Motamarry A, Asemani D, Haemmerich D. Thermosensitive Liposomes. In Liposomes. Rijeka InTech.2017;187-212.
  • 37.Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M et al.. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 2007;13:2722-7.
  • 38.SAYINER Ö, ÇOMOĞLU T. NANOTAŞIYICI SİSTEMLERDE HEDEFLENDİRME TARGETING WITH NANOCARRIER SYSTEMS. Journal of Faculty of Pharmacy of Ankara University.2016;40:62-79.
  • 39.Pourhassan H, Clergeaud G, Hansen AE, Østrem RG, Fliedner FP, Melander F et al.. Revisiting the use of sPLA2-sensitive liposomes in cancer therapy. Journal of Controlled Release.2017;261:163-173.
  • 40.Karabulut B, Kerimoğlu O, Uğurlu T. Dendrimerler-ilaç sistemler. Klinik ve Deneysel Sağlık Bilimleri.2015;5:31-40.
  • 41.Pal D, Nayak AK. Nanotechnology for targeted delivery in cancer therapeutics. Int J Pharm Sci Rev Res. 2010;1:1-7.
  • 42.Zhang C, Pan D, Luo K, Li N, Guo C, Zheng X et al.. Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polimer Kimyası.2014;5:5227-5235.
  • 43.DERMAN S, KIZILBEY K, AKDESTE ZM. Polymeric nanoparticles. Sigma Journal of Engineering and Natural Sciences.2013;31:107-120.
  • 44.Belletti D, Grabrucker AM, Pederzoli F, Menrath I, Cappello V, Vandelli MA et al.. Exploiting the versatility of cholesterol in nanoparticles formulation. International Journal of Pharmaceutics.2016;511:331-340.
  • 45.MÜDERRİSOĞLU AE, ÇOMOĞLU T. An overview of polymeric particulate drug delivery system formulations. Ankara Ecz. Fak. Derg.2010;39:343-368.
  • 46.Joseph E, Saha RN. Studies on the pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: Effect of the material used and surface modification. Drug Development and Industrial Pharmacy. 2017;43:678-686.
  • 47.Gao W, Chen Y, Thompson DH, Park K, Li T. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. Journal of Controlled Release.2016;237:168-176.
  • 48.Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews. 2008;60:1638-1649.
  • 49.Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers. In Multifunctional pharmaceutical Nanocarriers. Springer.2008; 67-80
  • 50.Mohapatra A, Uthaman S, Park IK. Polyethylene glycol nanoparticles as promising tools for anticancer therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-Cancer Therapeutics. 2019;205-231.
  • 51.Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF. It houses targeted nanogel systems. BMC kanseri.2010;10:1-11.
  • 52.Li N, Wang J, Yang X, Li L. New nanogels as drug delivery systems for poorly soluble anticancer drugs. Kolloidler ve Yüzeyler B: Biyoarayüzler. 2011;83:237-244.
  • 53.Oh NM, Oh KT, Baik HJ, Lee BR, Lee AH, Youn YS et al.. A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation. Colloids and surfaces B: Biointerfaces. 2010;78:120-126.
  • 54.Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007;9:257-288. 55.Ferrari M. Cancer nanotechnology: opportunities and challenges. Doğa kanser incelemeleri. 2005;5:161-171.
  • 56.Baghaban-Eslaminejad M, Oryan A, Kamali A, Moshiri A. Nanomedicine, nanotechnology and the role of nanostructures in oral bone healing, modeling and remodeling. In Nanostructures for Oral Medicine. Elsevier.2017;777-832.
  • 57. Labakademi blog. Available from: https://labakademi.com/kanser-tani-ve-tedavisinde-nanoshell-yontemi/ Accessed: 2 July 2022.
  • 58.Singh OP, Nehru RM. Nanotechnology and cancer treatment. Asian J Exp Sci.2008;22:6.
  • 59.McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Progress in molecular biology and translational science.2011;104 :563-601.
  • 60.Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupuncture & electro-therapeutics Research. 2007;32:81-86.
  • 61.Desmond LJ, Phan AN, Gentile P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environmental Science: Nano. 2021; 8:848-862.
  • 62.Meenambiga SS, Sakthiselvan P, Hari S, Umai D. Nanotechnology for blood testing to predict blood diseases/blood disorders. Hematoloji, Kan Transfüzyonu ve Yapay Kan için Nanoteknolojide . Elsevier.2022;285-311.
  • 63. Choi YE, Kwak JW, Park JW. Nanotechnology for early cancer detection. Sensors.2010;10:428-455.
Year 2023, Volume: 32 Issue: 1, 52 - 60, 31.03.2023
https://doi.org/10.17827/aktd.1181394

Abstract

References

  • 1.Bodur E, Demirpençe E. Kodlamayan RNA’lar ve gen susturumu [Non-coding RNAs and gene silencing]. Hacettepe Tıp Derg. 2010;41:82-89.
  • 2.Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363-366.
  • 3.Ünal E, Tahmaz I, Toroslu İH, Serin GC, Yılmaz A. Post-Transkripsiyonel Gen Susturulması ve Kullanım Alanları.
  • 4.Mozafari MR. Nanomaterials and nanosystems for biomedical applications. Springer Science & Business Media. 2007.
  • 5.Caban S, Aytekin E, Sahin A, Capan Y. Nanosystems for drug delivery. OA Drug Design & Delivery 2014;18:2(1):2.
  • 6.Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nature reviews Molecular cell biology. 2003;4:457-467.
  • 7. National Cancer Institute (NCI). Available from: https://www.cancer.gov/nano/cancer-nanotechnology/benefits. Accessed: 12 June 2022
  • 8.Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al.. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the national academy of Sciences. 2002;99:15524-15529.
  • 9.Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri, S et al.. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Ulusal Bilimler Akademisi Bildiriler Kitabı. 2004;101:2999-3004.
  • 10.Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP, & James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular cancer Research. 2003;1:882-891.
  • 11.Saydam F, Değirmenci İ, Güneş HV. MikroRNA'lar ve kanser. Dicle Tıp Derg.2011;38.
  • 12. Banno K, Yanokura M, Kisu I, Yamagami W, Susumu N, Aoki D. MicroRNAs in endometrial cancer. International journal of clinical oncology. 2013;18:186-192.
  • 13.Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al.. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences. 2005;102: 13944-13949.
  • 14.Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al.. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635-647.
  • 15. Karagün BŞ, Antmen B, Kılınç Y. Mikro RNA ve kanser. Türk Klinik Biyokimya Derg. 2014;12:45-56. 16.Oylar Ö, Tekin İ. Kanserin teşhis ve tedavisinde nanoteknolojinin önemi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi.2011;16.
  • 17.Auyang YS. Cancer causes and cancer research on many levels of complexity. Creat. Technol. 2006;1-15.
  • 18.Singh KK. Nanotechnology in cancer detection and treatment. Technology in Cancer Research & Treatment.2005;4: 583-583.
  • 19.Sathe TR, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Analytical Chemistry. 2006;78:5627-5632.
  • 20.Kumar B, Yadav PR, Goel HC, Rizvi M. LATEST DEVELOPMENTS IN CANCER TREATMENT WITH NANOTECHNOLOGY. Digest Journal of Nanomaterials & Biostructures (DJNB). 2009;4.
  • 21.Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert opinion on drug delivery.2006;3:311-324.
  • 22.Marangoz Ö, Yavuz O. Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri. Turk Hij Den Biyol Derg. 2020;77:509-526
  • 23.Ayata O, Haberal KC, Or G, Polat C, Turgut A. Lipozomların Tıpta Kullanımı. Başkent Tıp Fakültesi.2012.
  • 24.Paszko E, Senge MO. Immunoliposomes. Current medicinal chemistry. 2012;19:5239-5277.
  • 25.Yang G, Yin B. Therapeutic effects of long-circulating miR-135a-containing cationic immunoliposomes against gallbladder cancer. Bilimsel raporlar. 2017;7:1-15.
  • 26.Mastrobattista E, Storm G, Van Bloois L, Reszka R, Bloemen PGM, Crommelin DJA et al.. Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1999;1419:353-363.
  • 27.İstanbul Üniversitesi. Available from: https://avesis.istanbul.edu.tr Accessed: 20 June 2022. 28.Yıldız TeknikÜniversitesi. Available from: https://avesis.yildiz.edu.tr Accessed: 20 June 2022.
  • 29.Pedrosa LRC, Ten Hagen TL, Süss R, van Hell A, Eggermont AM, Verheij M et al.. Short-chain glycoceramides promote intracellular mitoxantrone delivery from novel nanoliposomes into breast cancer cells. Pharmaceutical Research. 2015;32:1354-1367.
  • 30.Sheikhpour M, Sadeghizadeh M, Yazdian F, Mansoori A, Asadi H, Movafagh A et al.. Co-Administration of Curcumin and Bromocriptine Nano-liposomes for Induction of Apoptosis in Lung Cancer Cells. Iran Biomed J. 2020;24:24-9.
  • 31.Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Molecular pharmaceutics.2011;8:1381-1389.
  • 32.Jiang Q, Yuan Y, Gong Y, Luo X, Su X, Hu X et al.. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. Journal of Cancer Research and Clinical Oncology. 2019;145:2951-2967.
  • 33.Wayne EC, Long C, Haney MJ, Batrakova EV, Leisner TM, Parise LV et al.. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer. Advanced Science. 2019;6:1900582.
  • 34.Chu CJ, Szoka, FC pH'a duyarlı lipozomlar. Lipozom Araştırmaları Dergisi. 1994;4:361-395.
  • 35.Juang V, Chang CH, Wang CS, Wang HE, Lo YL. pH‐responsive PEG‐shedding and Targeting peptide‐modified nanoparticles for dual‐delivery of Irinotecan and microRNA to enhance tumor‐specific therapy. Small. 2019;15:1903296.
  • 36.Motamarry A, Asemani D, Haemmerich D. Thermosensitive Liposomes. In Liposomes. Rijeka InTech.2017;187-212.
  • 37.Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M et al.. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 2007;13:2722-7.
  • 38.SAYINER Ö, ÇOMOĞLU T. NANOTAŞIYICI SİSTEMLERDE HEDEFLENDİRME TARGETING WITH NANOCARRIER SYSTEMS. Journal of Faculty of Pharmacy of Ankara University.2016;40:62-79.
  • 39.Pourhassan H, Clergeaud G, Hansen AE, Østrem RG, Fliedner FP, Melander F et al.. Revisiting the use of sPLA2-sensitive liposomes in cancer therapy. Journal of Controlled Release.2017;261:163-173.
  • 40.Karabulut B, Kerimoğlu O, Uğurlu T. Dendrimerler-ilaç sistemler. Klinik ve Deneysel Sağlık Bilimleri.2015;5:31-40.
  • 41.Pal D, Nayak AK. Nanotechnology for targeted delivery in cancer therapeutics. Int J Pharm Sci Rev Res. 2010;1:1-7.
  • 42.Zhang C, Pan D, Luo K, Li N, Guo C, Zheng X et al.. Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polimer Kimyası.2014;5:5227-5235.
  • 43.DERMAN S, KIZILBEY K, AKDESTE ZM. Polymeric nanoparticles. Sigma Journal of Engineering and Natural Sciences.2013;31:107-120.
  • 44.Belletti D, Grabrucker AM, Pederzoli F, Menrath I, Cappello V, Vandelli MA et al.. Exploiting the versatility of cholesterol in nanoparticles formulation. International Journal of Pharmaceutics.2016;511:331-340.
  • 45.MÜDERRİSOĞLU AE, ÇOMOĞLU T. An overview of polymeric particulate drug delivery system formulations. Ankara Ecz. Fak. Derg.2010;39:343-368.
  • 46.Joseph E, Saha RN. Studies on the pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: Effect of the material used and surface modification. Drug Development and Industrial Pharmacy. 2017;43:678-686.
  • 47.Gao W, Chen Y, Thompson DH, Park K, Li T. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. Journal of Controlled Release.2016;237:168-176.
  • 48.Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews. 2008;60:1638-1649.
  • 49.Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers. In Multifunctional pharmaceutical Nanocarriers. Springer.2008; 67-80
  • 50.Mohapatra A, Uthaman S, Park IK. Polyethylene glycol nanoparticles as promising tools for anticancer therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-Cancer Therapeutics. 2019;205-231.
  • 51.Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF. It houses targeted nanogel systems. BMC kanseri.2010;10:1-11.
  • 52.Li N, Wang J, Yang X, Li L. New nanogels as drug delivery systems for poorly soluble anticancer drugs. Kolloidler ve Yüzeyler B: Biyoarayüzler. 2011;83:237-244.
  • 53.Oh NM, Oh KT, Baik HJ, Lee BR, Lee AH, Youn YS et al.. A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation. Colloids and surfaces B: Biointerfaces. 2010;78:120-126.
  • 54.Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007;9:257-288. 55.Ferrari M. Cancer nanotechnology: opportunities and challenges. Doğa kanser incelemeleri. 2005;5:161-171.
  • 56.Baghaban-Eslaminejad M, Oryan A, Kamali A, Moshiri A. Nanomedicine, nanotechnology and the role of nanostructures in oral bone healing, modeling and remodeling. In Nanostructures for Oral Medicine. Elsevier.2017;777-832.
  • 57. Labakademi blog. Available from: https://labakademi.com/kanser-tani-ve-tedavisinde-nanoshell-yontemi/ Accessed: 2 July 2022.
  • 58.Singh OP, Nehru RM. Nanotechnology and cancer treatment. Asian J Exp Sci.2008;22:6.
  • 59.McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Progress in molecular biology and translational science.2011;104 :563-601.
  • 60.Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupuncture & electro-therapeutics Research. 2007;32:81-86.
  • 61.Desmond LJ, Phan AN, Gentile P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environmental Science: Nano. 2021; 8:848-862.
  • 62.Meenambiga SS, Sakthiselvan P, Hari S, Umai D. Nanotechnology for blood testing to predict blood diseases/blood disorders. Hematoloji, Kan Transfüzyonu ve Yapay Kan için Nanoteknolojide . Elsevier.2022;285-311.
  • 63. Choi YE, Kwak JW, Park JW. Nanotechnology for early cancer detection. Sensors.2010;10:428-455.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review
Authors

Yeşim Dağlıoğlu 0000-0001-8740-1162

Aleyna Yüksel 0000-0002-4426-4679

Publication Date March 31, 2023
Acceptance Date March 1, 2023
Published in Issue Year 2023 Volume: 32 Issue: 1

Cite

AMA Dağlıoğlu Y, Yüksel A. Kanser Tedavisi İçin MikroRNA’ların Çok İşlevli Nano-taşıyıcılar İle Dağıtımı. aktd. March 2023;32(1):52-60. doi:10.17827/aktd.1181394