Review
BibTex RIS Cite

Drugs in COVID-19 Therapy and Their Pharmacokınetics

Year 2024, Volume: 33 Issue: 1, 37 - 47, 31.03.2024
https://doi.org/10.17827/aktd.1425655

Abstract

Pharmacokinetics deals with all the factors that control this process, including the degree and rate at which a drug enters the body, is distributed, reaches its site of action, exerts its effect and is excreted. It also examines the time-dependent changes in the level of the drug in different compartments during this process. While the primary aim of pharmacokinetics is to determine the variables affecting patient- and drug-related kinetic parameters, the secondary aim is to define the kinetic parameters in the dose-concentration-time relationship. Therefore, the pharmacokinetic parameters of any drug used in emergencies or in special populations are instructive. In the context of COVID-19, understanding the pharmacokinetics of the medications used is crucial in order to achieve optimal therapeutic outcomes. This knowledge helps in determining the appropriate dosage, frequency of administration, and duration of treatment for COVID-19 patients. Pharmacokinetics also plays a role in understanding potential drug-drug interactions and the likelihood of adverse drug reactions. Furthermore, pharmacokinetic studies can aid in the development of new treatment strategies and therapeutic interventions for COVID-19. This article describes the basic pharmacokinetic parameters for favipiravir, remdesivir, lopinavir, ritonavir, chloroquine and hydroxychloroquine, which had to be used in COVID 19 treatment. This study will provide a knowledge base on the pharmacokinetics of various COVID-19 drugs.

Project Number

Bulunmamaktadır.

References

  • 1. Sakor A, Jozashoori S, Niazmand E, Rivas A, Bougiatiotis K, Aisopos F et al. COVID-19: A semantic-based approach for constructing a COVID-19 related knowledge graph from various sources and analyzing treatments’ toxicities. Web Semantics (Online). (https://doi.org/10.1016/j.websem.2022.100760). 2022; 75:100760 - 100760.
  • 2. Covid Tracker, by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). (https://.www.covidtracker.com).
  • 3. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. ACTT-1 Study Group Members. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. (doi: 10.1056/NEJMoa2007764). 2020; 383(19):1813-1826. doi: 10.1056/NEJMoa2007764.
  • 4. Ergoren MC, Tulay P, Dundar M. Are new genome variants detected in SARS-CoV-2 expected considering population dynamics in viruses? The EuroBiotech Journal. (https://doi.org/10.2478/ebtj-2021-0001). 2021; 5:1 - 3.
  • 5. Dong Y, Shamsuddin A, Campbell H, Theodoratou E. Current COVID-19 treatments: Rapid review of the literature. J Glob Health. (doi: 10.7189/jogh.11.10003). 2021; 11:10003.
  • 6. Chatterjee S. Remdesivir: Critical Clinical Appraisal for COVID 19 Treatment. Drug Res (Stuttg). (doi: 10.1055/a-1288-4078)2021; 71(3):138-148. doi: 10.1055/a-1288-4078.
  • 7. Chen PJ, Chao CM, Lai CC. Clinical efficacy and safety of favipiravir in the treatment of COVID-19 patients. J Infect. (doi: 10.1016/j.jinf.2020.12.005)2021; 82(5):186-230.
  • 8. Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG et al. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J. (doi: 10.1111/febs.16662)2022; 20:10.1111/febs.16662.
  • 9. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. (doi: 10.1001/jama.2020.8630). 2020; 323(24): 2493–2502.
  • 10. Self WH, Semler MW, Leither LM, Casy JD, Angus DC, Brower RC et al. Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial. JAMA. (doi: 10.1001/jama.2020.22240). 2020; 324(21):2165-2176.
  • 11. Wang Y, Zhong W, Salam A, Tarning J, Zhan Q, Huang JA et al. Phase 2a, open-label, dose-escalating, multi-center pharmacokinetic study of favipiravir (T-705) in combination with oseltamivir in patients with severe influenza. EBioMedicine. (doi: 10.1016/j.ebiom.2020.103125) 2020; 62:103125.
  • 12. Saqrane S, El Mhammedi MA, Lahrich S, Laghrib F, El Bouabi Y, Farahi A et al. Recent knowledge in favor of remdesivir (GS-5734) as a therapeutic option for the COVID-19 infections. J Infect Public Health. (doi: 10.1016/j.jiph.2021.02.006). 2021;14(5):655-660.
  • 13. Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. (doi: 10. 1016/j.ijid.2020.10.069.Epub 2020 Oct 30). 2021; 102:501-508. Panovska-Stavridis I, Ridova N, Stojanoska T, Demiri I, Stevanovic M, Stojanovska S. Insight in the current progress in the largest clinical trials for COVID-19 drug management (as of January 2021). Pril (Makedon Akad Nauk Umet Odd Med Nauki). (doi: 10.2478/prilozi-2021-0001). 2021;42(1):5-18.
  • 14. Hsu A, Granneman GR, Bertz RJ. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet. (doi: 10.2165/00003088-199835040-00002). 1998; 35(4):275-91.
  • 15. Majumder J, Minko T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. (doi: 10.1208/s12248-020-00532-2). 2021; 5:23(1):14.
  • 16. Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med. (doi:10.1146/annurev.med.56.082103.104724). 2006; 57(1):119–137.
  • 17. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. (doi:10.1126/science.286.5439.487). 1999; 286(5439):487–491.
  • 18. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis.( doi:10.1093/cid/ciaa237). 2020; 71(15):732–739.
  • 19. Mishima E, Anzai N, Miyazaki M, Abe T. Uric acid elevation by favipiravir, an antiviral drug. Tohoku J. Exp. Med. (doi: 10.1620/tjem.251.87). 2020; 251(2):87-90.
  • 20. Manivannan E, Karthikeyan C, Moorthy NSHN, Chaturvedi SC. The rise and fall of chloroquine/hydroxychloroquine as compassionate therapy of COVID-19. Front Pharmacol. (doi:10.3389/fphar.2021.584940). 2021; 6:12.584940.
  • 21. Darawshy F, Abu Rmeileh A, Kuint R, Padawer D, Karim K, Fridlender Z et al. Residual symptoms, lung function, and imaging findings in patients recovering from SARS-CoV-2 infection. Intern Emerg Med. (doi: 10.1007/s11739-022-02950-w). 2022; 17(5):1491-1501.
  • 22. Jiang L, Chen W, Yu W, Hu M, Cao Y, Yao W et al. Driving pressure-guided lung protective ventilation strategy reduces postoperative pulmonary complications in patients recovered from COVID-19. Nan Fang Yi Ke Da Xue Xue Bao. (doi: 10.12122/j.issn.1673-4254.2023.10.23). 2023; 20:43(10):1821-1826.
  • 23. Vitiello A, Ferrara F. Pharmacological agents to therapeutic treatment of cardiac injury caused by Covid-19. Life Sci. (doi: 10.1016/j.lfs.2020.118510). 2020; 262:118510.
  • 24. Leung YM, Chana AYL, Chana EW, Chana WKY, Chuia CSL, Cowling BJ. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review. Emerg Microbes Infect. (doi: 0.1080/22221751.2020.1825914). 2020; 9(1):2190-2199.
  • 25. Jin Y, Ji W , Yang H, Chen S , Weiguo Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. (doi: 10.1038/s41392-020-00454-7). 2020; 24:5(1):293.
  • 26. Patel U, Malik P, Mehta D, Rajput P, Shrivastava M, Naveed M. Outcomes of COVID-19 Complications and their Possibilities as Potential Triggers of Stroke. J Stroke Cerebrovasc Dis. (doi: 10.1016/j.jstrokecerebrovasdis.2021.105805). 2021; 30(7):105805.
  • 27. Jungbauer F, Hülse R, Lu F, Ludwig S, Held V, Rotter N et al. Case Report: Bilateral Palsy of the Vocal Cords After COVID-19 Infection. Front Neurol. (doi: 10.3389/fneur.2021.619545). 2021; 12:619545.
  • 28. Rogers J, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry (doi: 10.1016/S2215-0366(20)30203-0). 2020; 7(7):611-627.
  • 29. Xu B, Ma FQ, He C, Wu ZQ, Fan CY, Mao HR et al. Incidence and affecting factors of pulmonary diffusing capacity impairment with COVID-19 survivors 18 months after discharge in Wuhan, China. J Infect. (doi: 10.1016/j.jinf.2021.12.020. Epub 2021 Dec 25). 2022; 84(2):16-18.
  • 30. Wang Y, Zhongd W, Salame A, Tarninge J, Zhan Q, Huang JA et al. Phase 2a, open-label, dose-escalating, multi-center pharmacokinetic study of favipiravir (T-705) in combination with oseltamivir in patients with severe influenza. E Bio. Medicine. (https://doi.org/10.1016/j.ebiom.2020.103125). 2020; 62:103125.
  • 31. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering. (https://doi.org/10.1016/j.eng.2020.03.007). 2020; 6: 1192–1198.
  • 32. Nguyen THT, Guedj J, Anglaret X, Laouenan C, Madelain V, Taburet AM et al. Favipiravir pharmacokinetics in Ebola-infected patients of the JIKI trial reveals concentrations lower than targeted. PLOS Negl. Trop. Dis. (doi:10.1371/journal.pntd.0005389). 2017; 11(2): 1-18.
  • 33. Yao X, Yan X, Wang X, Cai T, Zhang S, Cui C et al. Population-based meta-analysis of chloroquine: informing chloroquine pharmacokinetics in COVID-19 patients. Eur J Clin Pharmacol. (doi: 10.1007/s00228-020-03032-6). 2021; 77:583–593.
  • 34. Réa-Neto Á, Bernardelli RS, Câmara BMD, Reese FB, Queiroga MVO, Oliveira MC. An open-label randomized controlled trial evaluating the efficacy of chloroquine/hydroxychloroquine in severe COVID-19 patients. Sci Rep. (doi: 10.1038/s41598-021-88509-9). 2021; 27:11(1):9023.
  • 35. Olender SA, Perez KK, Go AS, Balani B, Price-Haywood EG, Shah NS et al. Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of Care. Clin. Infect. Dis. (https://doi.org/10.1093/cid/ciaa1041). 2020; 1–13.
  • 36. Yeming W, Dingyu Z, Guanhua D, Ronghui D, Jianping Z, Yang J et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. (https://doi.org/10. 1016/S0140-6736(20)31022-9). 2020; 395(10236):1569-1578.
  • 37. Dickinson L, Boffito M, Back D, Else L, Von Hentig N, Davies G et al. Sequential population pharmacokinetic modeling of lopinavir and ritonavir in healthy volunteers and assessment of different dosing strategies. Antimicrob. Agents Chemother. (doi: 10.1128/AAC.00887-10). 2011; 55(6):2775-82.
  • 38. Sağlam O, Demiray G, Güney B, Doğan-Kurtoğlu E, Ulusoy MG, Saraner N, et al. Single Dose, Two-way Crossover Bioequivalence Study of Favipiravir Tablet in Healthy Male Subjects. J Pharm Drug Develop. (doi: 10.5281/zenodo.4361817). 2020; 2.
  • 39. Pimentel J, Laurie C, Cockcroft A, Andersson N. Clinical studies assessing the efficacy, effectiveness and safety of remdesivir in management of COVID-19: A scoping review. Br J Clin Pharmacol. (doi: 10.1111/bcp.14677). 2020; 1–22.
  • 40. Miller-Handley H, Luckett K, Govil A. Treatment options for coronavirus disease 2019 in patients with reduced or absent kidney function. Adv. Chronic Kidney Dis. (doi: 10. 1053/j.ackd.2020.09.001). 2020; 27(5):434-441.
  • 41. Ghasemnejad-Berenji M, Pahapour S. Favipiravir and COVID-19: A simplified summary. Drug Res. (Stutg). (doi:10.1055/a-1296-7935). 2021; 71(3):166-170.

COVID-19 Tedavisinde Kullanılan İlaçlar ve Farmakokinetiği

Year 2024, Volume: 33 Issue: 1, 37 - 47, 31.03.2024
https://doi.org/10.17827/aktd.1425655

Abstract

Farmakokinetik, bir ilacın vücuda girme, dağılma, etki alanına ulaşma, etkisini gösterme ve atılma derecesi ve hızı dahil olmak üzere bu süreci kontrol eden tüm faktörlerle ilgilenir. Ayrıca bu süreç boyunca ilacın farklı kompartımanlardaki seviyesinin zamana bağlı olarak nasıl değiştiğini de inceler. Farmakokinetiğin birincil amacı hasta ve ilaçla ilgili kinetik parametreleri etkileyen değişkenleri belirlemek iken, ikincil amacı doz-konsantrasyon-zaman ilişkisindeki kinetik parametreleri tanımlamaktır. Bu nedenle, acil durumlarda veya özel popülasyonlarda kullanılan herhangi bir ilacın farmakokinetik parametreleri öğreticidir. COVID-19 bağlamında, kullanılan ilaçların farmakokinetiğini anlamak, optimum terapötik sonuçlara ulaşmak için çok önemlidir. Bu bilgi, COVID-19 hastaları için uygun dozajın, uygulama sıklığının ve tedavi süresinin belirlenmesine yardımcı olur. Farmakokinetik, potansiyel ilaç-ilaç etkileşimlerinin ve advers ilaç reaksiyonlarının olasılığının anlaşılmasında da rol oynar. Ayrıca, farmakokinetik çalışmalar COVID-19 için yeni tedavi stratejilerinin ve terapötik müdahalelerin geliştirilmesine yardımcı olabilir. Bu makalede, COVID 19 tedavisinde kullanılması gereken favipiravir, remdesivir, lopinavir, ritonavir, klorokin ve hidroksiklorokin için temel farmakokinetik parametreler açıklanmaktadır. Bu çalışma, çeşitli COVID-19 ilaçlarının farmakokinetiği hakkında bir bilgi tabanı sağlayacaktır.

Ethical Statement

Bulunmamaktadır.

Supporting Institution

Bulunmamaktadır.

Project Number

Bulunmamaktadır.

Thanks

Bulunmamaktadır.

References

  • 1. Sakor A, Jozashoori S, Niazmand E, Rivas A, Bougiatiotis K, Aisopos F et al. COVID-19: A semantic-based approach for constructing a COVID-19 related knowledge graph from various sources and analyzing treatments’ toxicities. Web Semantics (Online). (https://doi.org/10.1016/j.websem.2022.100760). 2022; 75:100760 - 100760.
  • 2. Covid Tracker, by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). (https://.www.covidtracker.com).
  • 3. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. ACTT-1 Study Group Members. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. (doi: 10.1056/NEJMoa2007764). 2020; 383(19):1813-1826. doi: 10.1056/NEJMoa2007764.
  • 4. Ergoren MC, Tulay P, Dundar M. Are new genome variants detected in SARS-CoV-2 expected considering population dynamics in viruses? The EuroBiotech Journal. (https://doi.org/10.2478/ebtj-2021-0001). 2021; 5:1 - 3.
  • 5. Dong Y, Shamsuddin A, Campbell H, Theodoratou E. Current COVID-19 treatments: Rapid review of the literature. J Glob Health. (doi: 10.7189/jogh.11.10003). 2021; 11:10003.
  • 6. Chatterjee S. Remdesivir: Critical Clinical Appraisal for COVID 19 Treatment. Drug Res (Stuttg). (doi: 10.1055/a-1288-4078)2021; 71(3):138-148. doi: 10.1055/a-1288-4078.
  • 7. Chen PJ, Chao CM, Lai CC. Clinical efficacy and safety of favipiravir in the treatment of COVID-19 patients. J Infect. (doi: 10.1016/j.jinf.2020.12.005)2021; 82(5):186-230.
  • 8. Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG et al. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J. (doi: 10.1111/febs.16662)2022; 20:10.1111/febs.16662.
  • 9. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. (doi: 10.1001/jama.2020.8630). 2020; 323(24): 2493–2502.
  • 10. Self WH, Semler MW, Leither LM, Casy JD, Angus DC, Brower RC et al. Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial. JAMA. (doi: 10.1001/jama.2020.22240). 2020; 324(21):2165-2176.
  • 11. Wang Y, Zhong W, Salam A, Tarning J, Zhan Q, Huang JA et al. Phase 2a, open-label, dose-escalating, multi-center pharmacokinetic study of favipiravir (T-705) in combination with oseltamivir in patients with severe influenza. EBioMedicine. (doi: 10.1016/j.ebiom.2020.103125) 2020; 62:103125.
  • 12. Saqrane S, El Mhammedi MA, Lahrich S, Laghrib F, El Bouabi Y, Farahi A et al. Recent knowledge in favor of remdesivir (GS-5734) as a therapeutic option for the COVID-19 infections. J Infect Public Health. (doi: 10.1016/j.jiph.2021.02.006). 2021;14(5):655-660.
  • 13. Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. (doi: 10. 1016/j.ijid.2020.10.069.Epub 2020 Oct 30). 2021; 102:501-508. Panovska-Stavridis I, Ridova N, Stojanoska T, Demiri I, Stevanovic M, Stojanovska S. Insight in the current progress in the largest clinical trials for COVID-19 drug management (as of January 2021). Pril (Makedon Akad Nauk Umet Odd Med Nauki). (doi: 10.2478/prilozi-2021-0001). 2021;42(1):5-18.
  • 14. Hsu A, Granneman GR, Bertz RJ. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet. (doi: 10.2165/00003088-199835040-00002). 1998; 35(4):275-91.
  • 15. Majumder J, Minko T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. (doi: 10.1208/s12248-020-00532-2). 2021; 5:23(1):14.
  • 16. Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med. (doi:10.1146/annurev.med.56.082103.104724). 2006; 57(1):119–137.
  • 17. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. (doi:10.1126/science.286.5439.487). 1999; 286(5439):487–491.
  • 18. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis.( doi:10.1093/cid/ciaa237). 2020; 71(15):732–739.
  • 19. Mishima E, Anzai N, Miyazaki M, Abe T. Uric acid elevation by favipiravir, an antiviral drug. Tohoku J. Exp. Med. (doi: 10.1620/tjem.251.87). 2020; 251(2):87-90.
  • 20. Manivannan E, Karthikeyan C, Moorthy NSHN, Chaturvedi SC. The rise and fall of chloroquine/hydroxychloroquine as compassionate therapy of COVID-19. Front Pharmacol. (doi:10.3389/fphar.2021.584940). 2021; 6:12.584940.
  • 21. Darawshy F, Abu Rmeileh A, Kuint R, Padawer D, Karim K, Fridlender Z et al. Residual symptoms, lung function, and imaging findings in patients recovering from SARS-CoV-2 infection. Intern Emerg Med. (doi: 10.1007/s11739-022-02950-w). 2022; 17(5):1491-1501.
  • 22. Jiang L, Chen W, Yu W, Hu M, Cao Y, Yao W et al. Driving pressure-guided lung protective ventilation strategy reduces postoperative pulmonary complications in patients recovered from COVID-19. Nan Fang Yi Ke Da Xue Xue Bao. (doi: 10.12122/j.issn.1673-4254.2023.10.23). 2023; 20:43(10):1821-1826.
  • 23. Vitiello A, Ferrara F. Pharmacological agents to therapeutic treatment of cardiac injury caused by Covid-19. Life Sci. (doi: 10.1016/j.lfs.2020.118510). 2020; 262:118510.
  • 24. Leung YM, Chana AYL, Chana EW, Chana WKY, Chuia CSL, Cowling BJ. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review. Emerg Microbes Infect. (doi: 0.1080/22221751.2020.1825914). 2020; 9(1):2190-2199.
  • 25. Jin Y, Ji W , Yang H, Chen S , Weiguo Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. (doi: 10.1038/s41392-020-00454-7). 2020; 24:5(1):293.
  • 26. Patel U, Malik P, Mehta D, Rajput P, Shrivastava M, Naveed M. Outcomes of COVID-19 Complications and their Possibilities as Potential Triggers of Stroke. J Stroke Cerebrovasc Dis. (doi: 10.1016/j.jstrokecerebrovasdis.2021.105805). 2021; 30(7):105805.
  • 27. Jungbauer F, Hülse R, Lu F, Ludwig S, Held V, Rotter N et al. Case Report: Bilateral Palsy of the Vocal Cords After COVID-19 Infection. Front Neurol. (doi: 10.3389/fneur.2021.619545). 2021; 12:619545.
  • 28. Rogers J, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry (doi: 10.1016/S2215-0366(20)30203-0). 2020; 7(7):611-627.
  • 29. Xu B, Ma FQ, He C, Wu ZQ, Fan CY, Mao HR et al. Incidence and affecting factors of pulmonary diffusing capacity impairment with COVID-19 survivors 18 months after discharge in Wuhan, China. J Infect. (doi: 10.1016/j.jinf.2021.12.020. Epub 2021 Dec 25). 2022; 84(2):16-18.
  • 30. Wang Y, Zhongd W, Salame A, Tarninge J, Zhan Q, Huang JA et al. Phase 2a, open-label, dose-escalating, multi-center pharmacokinetic study of favipiravir (T-705) in combination with oseltamivir in patients with severe influenza. E Bio. Medicine. (https://doi.org/10.1016/j.ebiom.2020.103125). 2020; 62:103125.
  • 31. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering. (https://doi.org/10.1016/j.eng.2020.03.007). 2020; 6: 1192–1198.
  • 32. Nguyen THT, Guedj J, Anglaret X, Laouenan C, Madelain V, Taburet AM et al. Favipiravir pharmacokinetics in Ebola-infected patients of the JIKI trial reveals concentrations lower than targeted. PLOS Negl. Trop. Dis. (doi:10.1371/journal.pntd.0005389). 2017; 11(2): 1-18.
  • 33. Yao X, Yan X, Wang X, Cai T, Zhang S, Cui C et al. Population-based meta-analysis of chloroquine: informing chloroquine pharmacokinetics in COVID-19 patients. Eur J Clin Pharmacol. (doi: 10.1007/s00228-020-03032-6). 2021; 77:583–593.
  • 34. Réa-Neto Á, Bernardelli RS, Câmara BMD, Reese FB, Queiroga MVO, Oliveira MC. An open-label randomized controlled trial evaluating the efficacy of chloroquine/hydroxychloroquine in severe COVID-19 patients. Sci Rep. (doi: 10.1038/s41598-021-88509-9). 2021; 27:11(1):9023.
  • 35. Olender SA, Perez KK, Go AS, Balani B, Price-Haywood EG, Shah NS et al. Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of Care. Clin. Infect. Dis. (https://doi.org/10.1093/cid/ciaa1041). 2020; 1–13.
  • 36. Yeming W, Dingyu Z, Guanhua D, Ronghui D, Jianping Z, Yang J et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. (https://doi.org/10. 1016/S0140-6736(20)31022-9). 2020; 395(10236):1569-1578.
  • 37. Dickinson L, Boffito M, Back D, Else L, Von Hentig N, Davies G et al. Sequential population pharmacokinetic modeling of lopinavir and ritonavir in healthy volunteers and assessment of different dosing strategies. Antimicrob. Agents Chemother. (doi: 10.1128/AAC.00887-10). 2011; 55(6):2775-82.
  • 38. Sağlam O, Demiray G, Güney B, Doğan-Kurtoğlu E, Ulusoy MG, Saraner N, et al. Single Dose, Two-way Crossover Bioequivalence Study of Favipiravir Tablet in Healthy Male Subjects. J Pharm Drug Develop. (doi: 10.5281/zenodo.4361817). 2020; 2.
  • 39. Pimentel J, Laurie C, Cockcroft A, Andersson N. Clinical studies assessing the efficacy, effectiveness and safety of remdesivir in management of COVID-19: A scoping review. Br J Clin Pharmacol. (doi: 10.1111/bcp.14677). 2020; 1–22.
  • 40. Miller-Handley H, Luckett K, Govil A. Treatment options for coronavirus disease 2019 in patients with reduced or absent kidney function. Adv. Chronic Kidney Dis. (doi: 10. 1053/j.ackd.2020.09.001). 2020; 27(5):434-441.
  • 41. Ghasemnejad-Berenji M, Pahapour S. Favipiravir and COVID-19: A simplified summary. Drug Res. (Stutg). (doi:10.1055/a-1296-7935). 2021; 71(3):166-170.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Cardiovascular Medicine and Haematology (Other)
Journal Section Review
Authors

Esra Demirtürk 0000-0002-8918-0073

Project Number Bulunmamaktadır.
Publication Date March 31, 2024
Submission Date January 25, 2024
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 33 Issue: 1

Cite

AMA Demirtürk E. COVID-19 Tedavisinde Kullanılan İlaçlar ve Farmakokinetiği. aktd. March 2024;33(1):37-47. doi:10.17827/aktd.1425655