Review
BibTex RIS Cite

Neurochemical, Neuroinflammatory and Neurophysiological Dynamics in The Pathogenesis of Schizophrenia

Year 2025, Volume: 34 Issue: 2, 141 - 155, 30.06.2025
https://doi.org/10.17827/aktd.1614815

Abstract

Schizophrenia is a polygenetic and multifactorial neurodegenerative disease characterized by positive and negative symptoms and cognitive disorders. Considering its chronopathology, it is usually not diagnosed in the prodromal period due to the first psychosis occurring in adulthood. It is aimed to evaluate the relationship between genetic predisposition, epigenetic effects, inflammation, neurotrophic factors, oxidative stress, neurochemical and neurodevelopmental hypotheses and existing biomarkers from a holistic perspective. In this study, neuroimaging methods, blood and CSF values, animal experiments, genomic findings and epigenetic studies shaped by phenotype were analyzed. Hereditary factors, intrauterine developmental anomalies, congenital malformations, prenatal and postnatal stressor factors or exposure to infection are thought to play a role in the formation of the disease by affecting neurodevelopmental processes and brain plasticity. It is stated that cytokine irregularities and imbalances of neurotrophic factors, mitochondrial dysfunction, excessive synaptic pruning may cause dysregulation in oligodendrocytes, microglia and astrocytes. It is stated that oxidative stress factors and neuroinflammation affect neurochemical transmission. According to histological findings, abnormalities occurring in the premorbid period cause functional and structural changes in the brain. It is stated that it is important for candidate markers to reflect the pathological process rather than being epiphenomenal in determining the causal mechanisms related to the pathophysiology of the disease.

References

  • 1. Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet Lond. Engl. 388, 86–97.
  • 2. Summakoğlu, D., & Ertuğrul, B. (2018). Schizophrenia and its treatment. Lectio Scientific Journal of Health and Natural Sciences, 1(2), 43-61.
  • 3. Khavari, B., & Cairns, M. J. (2020). Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers. Cells, 9(8), 1837.
  • 4. Ayano, G. (2016). Schizophrenia: a concise overview of etiology, epidemiology diagnosis and management: review of literatures. J Schizophrenia Res, 3(2), 2-7.
  • 5. Karakuş, G., Kocal, Y., & Sert, D. (2017). Schizophrenia: etiology, clinical features and treatment. Arch. Med. Rev. J, 26(2), 251-67.
  • 6. Fatani, B. Z., Aldawod, R., Alhawaj, A., Alsadah, S., Slais, F. R., Alyaseen, E. N., ... & Qassaim, Y. A. (2017). Schizophrenia: etiology, pathophysiology and management-a review. The Egyptian Journal of Hospital Medicine, 69(6), 2640-2646.
  • 7. McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiologic reviews, 30(1), 67-76.
  • 8. McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry, 19(1), 15-33.
  • 9. Khan, A., & Powell, S. B. (2018). Sensorimotor gating deficits in “two-hit” models of schizophrenia risk factors. Schizophrenia research, 198, 68-83.
  • 10. Ermakov, E. A., Dmitrieva, E. M., Parshukova, D. A., Kazantseva, D. V., Vasilieva, A. R., & Smirnova, L. P. (2021). Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxidative Medicine and Cellular Longevity.
  • 11. Müller, N. (2018). Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophrenia bulletin, 44(5), 973-982.
  • 12. Fišar, Z. (2022). Biological hypotheses, risk factors, and biomarkers of schizophrenia. Progress in NeuroPsychopharmacology and Biological Psychiatry, 110626.
  • 13. Blokhin, I. O., Khorkova, O., Saveanu, R. V., & Wahlestedt, C. (2020). Molecular mechanisms of psychiatric diseases. Neurobiology of disease, 146, 105136.
  • 14. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013 Feb;43(2):239-57.
  • 15. Momtazmanesh, S., Zare-Shahabadi, A., & Rezaei, N. (2019). Cytokine alterations in schizophrenia: an updated review. Frontiers in psychiatry, 10, 892.
  • 16. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Apr 5;42:115-21. doi: 10.1016/j.pnpbp.2011.12.002. Epub 2011 Dec 13. PMID: 22192886.
  • 17. Namlı MN, Karabulut N, Ayyıldız H. Evaluation of S100B Protein in Patients with Schizophrenia with Seropositive and Seronegative Toxoplasma. Med J Bakirkoy. 2021 Dec;17(4):420-424.
  • 18. Erkmen, T., Şahin, C., & Arıcıoğlu, F. Şizofreni’de İnflamatuvar Mekanizmaların Yeri. Clinical and Experimental Health Sciences, 2015; 5(2), 134-139.
  • 19. Chukaew P, Bunmak N, Auampradit N, Siripaiboonkij A, Saengsawang W, Ratta-Apha W. Correlation of BDNF, VEGF, TNF-α, and S100B with cognitive impairments in chronic, medicated schizophrenia patients. Neuropsychopharmacol Rep. 2022 Sep;42(3):281-287.
  • 20. Langeh U, Singh S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol. 2021;19(2):265-277.
  • 21. Hagmeyer S, Cristóvão JS, Mulvihill JJE, Boeckers TM, Gomes CM, Grabrucker AM. Zinc Binding to S100B Affords Regulation of Trace Metal Homeostasis and Excitotoxicity in the Brain. Front Mol Neurosci. 2018 Jan 17; 10:456.
  • 22. Deng H, Kahlon RS, Mohite S, Amin PA, Zunta-Soares G, Colpo GD, Stertz L, Fries GR, Walss-Bass C, Soares JC, Okusaga OO. Elevated Plasma S100B, Psychotic Symptoms, and Cognition in Schizophrenia. Psychiatr Q. 2018 Mar;89(1):53-60.
  • 23. Goldsmith, D. R., & Rapaport, M. H. (2020). Inflammation and negative symptoms of schizophrenia: implications for reward processing and motivational deficits. Frontiers in psychiatry, 11, 46.
  • 24. Fujigaki H, Mouri A, Yamamoto Y, Nabeshima T, Saito K. Linking phencyclidine intoxication to the tryptophan-kynurenine pathway: Therapeutic implications for schizophrenia. Neurochem Int. 2019 May; 125:1-6.
  • 25. Kindler, J., Lim, C. K., Weickert, C. S., Boerrigter, D., Galletly, C., Liu, D., ... & Weickert, T. W. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Molecular psychiatry, 2020; 25(11), 2860-2872.
  • 26. Cao, B., Chen, Y., Ren, Z., Pan, Z., McIntyre, R. S., & Wang, D. Dysregulation of kynurenine pathway and potential dynamic changes of kynurenine in schizophrenia: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 2021; 123, 203-214.
  • 27. Micó JA, Rojas-Corrales MO, Gibert-Rahola J, Parellada M, Moreno D, Fraguas D, Graell M, Gil J, Irazusta J, Castro-Fornieles J, Soutullo C, Arango C, Otero S, Navarro A, Baeza I, Martínez-Cengotitabengoa M, González-Pinto A. Reduced antioxidant defense in early onset first-episode psychosis: a case-control study. BMC Psychiatry. 2011 Feb 14; 11:26.
  • 28. Sedlak TW, Nucifora LG, Koga M, Shaffer LS, Higgs C, Tanaka T, Wang AM, Coughlin JM, Barker PB, Fahey JW, Sawa A. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol Neuropsychiatry. 2018 May;3(4):214-222.
  • 29. Kumar, J., Liddle, E. B., Fernandes, C. C., Palaniyappan, L., Hall, E. L., Robson, S. E., ... & Liddle, P. F. Glutathione and glutamate in schizophrenia: a 7T MRS study. Molecular psychiatry, 2020 25(4), 873-882.
  • 30. Lin, Chieh-Hsin; Lane, Hsien-Yuan. Early identification and intervention of schizophrenia: insight from hypotheses of glutamate dysfunction and oxidative stress. Frontiers in psychiatry, 2019, 10: 93.
  • 31. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, Do KQ. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017 Jul;22(7):936-943.
  • 32. O’Donnell KJ, Meaney MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry. 2017; 174:319–28.
  • 33. Abbas AI, Sundiang MJM, Henoch B, Morton MP, Bolkan SS, Park AJ, Harris AZ, Kellendonk C, Gordon JA. Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding. Neuron. 2018 Nov 21;100(4):926-939.e3.
  • 34. Lestra, V., Romeo, B., Martelli, C., Benyamina, A., & Hamdani, N. (2022). Could CRP be a differential biomarker of illness stages in schizophrenia? A systematic review and meta-analysis. Schizophrenia Research, 246, 175-186.
  • 35. Pawełczyk, T., Grancow-Grabka, M., Trafalska, E., Szemraj, J., Żurner, N., & Pawełczyk, A. (2019). An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacology, 236(9), 2811-2822.
  • 36. Utami N, Effendy E, Amin M. The Relation of Brain-Derived Neurotropic Factor (BDNF) Serum Level to Sub-Domain Cognitive Functions of Indonesian Schizophrenia Patients Measured by MoCA-Ina. Open Access Maced J Med Sci. 2019 Dec 30;7(23):4053-4058.
  • 37. Allimuthu, P., Nandeesha, H., Chinniyappan, R., Bhardwaz, B., & Blessed raj, J. (2021). Relationship of brain-derived neurotrophic factor with Interleukin-23, testosterone and disease severity in schizophrenia. Indian Journal of Clinical Biochemistry, 36, 365-369
  • 38. Nojima, S., Fuchikami, M., Kataoka, T., Araki, M., Omura, J., Miyagi, T., ... & Morinobu, S. (2021). Alterations in DNA methylation rates of brain-derived neurotrophic factor in patients with schizophrenia. The European Journal of Psychiatry, 35(2), 67-74.
  • 39. Bora, E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychological medicine, 2019 49(12), 1971-1979.
  • 40. Shi, X. J., Du, Y., Li, X. S., Yao, C. Q., & Cheng, Y. Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. Journal of Psychiatric Research, 2022 156, 538-546.
  • 41. Cui, X., McGrath, J. J., Burne, T. H., & Eyles, D. W. Vitamin D and schizophrenia: 20 years on. Molecular Psychiatry, 2021 26(7), 2708-2720.
  • 42. Bansal, V., & Chatterjee, I. Association of vitamins and neurotransmitters: understanding the effect on schizophrenia. Neurochemical Journal, 2022 16(1), 39-45
  • 43. Amminger GP, Nelson B, Markulev C, Yuen HP, Schäfer MR, Berger M, Mossaheb N, Schlögelhofer M, Smesny S, Hickie IB, Berger GE, Chen EYH, de Haan L, Nieman DH, Nordentoft M, Riecher-Rössler A, Verma S, Thompson A, Yung AR, McGorry PD. The NEURAPRO Biomarker Analysis: Long-Chain Omega-3 Fatty Acids Improve 6-Month and 12-Month Outcomes in Youths at Ultra-High Risk for Psychosis. Biol Psychiatry. 2020 Feb 1;87(3):243-252.
  • 44. Ben-Shachar D. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. J Neural Transm (Vienna). 2020 Feb;127(2):159-168.
  • 45. Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2022 Apr;27(4):1886-1897.
  • 46. Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience. 2014 Dec 12; 282:248-57.
  • 47. McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends in neurosciences, 2019 42(3), 205-220.
  • 48. Cassidy CM, Balsam PD, Weinstein JJ, Rosengard RJ, Slifstein M, Daw ND, Abi-Dargham A, Horga G. A Perceptual Inference Mechanism for Hallucinations Linked to Striatal Dopamine. Curr Biol. 2018 Feb 19;28(4):503-514.e4.
  • 49. Purves-Tyson TD, Brown AM, Weissleder C, Rothmond DA, Shannon Weickert C. Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Mol Brain. 2021 Jun 26;14(1):96.
  • 50. Reynolds GP. The neurochemical pathology of schizophrenia: post-mortem studies from dopamine to parvalbumin. J Neural Transm (Vienna). 2022 Jun;129(5-6):643-647.
  • 51. Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry. 2021 Jun;178(6):509-521.
  • 52. Arya, A., G. Sindhwani, and Kadian R. Neurotransmitter and brain parts involved in shcizophrenia. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 6, June 2018, pp. 4-11
  • 53. Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Nics L, Pfaff S, Philippe C, Berroterán-Infante N, Pichler V, Meyer BM, Rabl U, Sezen P, Cumming P, Stimpfl T, Sitte HH, Lanzenberger R, Mossaheb N, Zimprich A, Rusjan P, Dorffner G, Mitterhauser M, Hacker M, Pezawas L, Kasper S, Wadsak W, Praschak-Rieder N, Willeit M. On the relationship of first-episode psychosis to the amphetamine-sensitized state: a dopamine D2/3 receptor agonist radioligand study. Transl Psychiatry. 2020 Jan 8;10(1):2.
  • 54. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016 Aug;17(8):524-32.
  • 55. Grace AA. Dopamine System Dysregulation and the Pathophysiology of Schizophrenia: Insights From the Methylazoxymethanol Acetate Model. Biol Psychiatry. 2017 Jan 1;81(1):5-8.
  • 56. Modinos G, Şimşek F, Azis M, Bossong M, Bonoldi I, Samson C, Quinn B, Perez J, Broome MR, Zelaya F, Lythgoe DJ, Howes OD, Stone JM, Grace AA, Allen P, McGuire P. Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis. Neuropsychopharmacology. 2018 Dec;43(13):2652-2659.
  • 57. Escamilla CO, Filonova I, Walker AK, Xuan ZX, Holehonnur R, Espinosa F, Liu S, Thyme SB, López-García IA, Mendoza DB, Usui N, Ellegood J, Eisch AJ, Konopka G, Lerch JP, Schier AF, Speed HE, Powell CM. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017 Nov 9;551(7679):227-231.
  • 58. Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci. 2009 Feb 25;29(8):2344-54.
  • 59. de Bartolomeis A, Ciccarelli M, Vellucci L, Fornaro M, Iasevoli F, Barone A. Update on novel antipsychotics and pharmacological strategies for treatment-resistant schizophrenia. Expert Opin Pharmacother. 2022 Dec;23(18):2035-2052.
  • 60. Parellada E, Gassó P. Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry. 2021 May 6;11(1):271.
  • 61. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015 Feb;29(2):97-115.
  • 62. Robison AJ, Thakkar KN, Diwadkar VA. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol Psychiatry. 2020 Feb 1;87(3):204-214.
  • 63. Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci. 2015 Aug;38(8):506-16.
  • 64. Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res. 2015 Sep;167(1-3):98-107.
  • 65. Reddy-Thootkur M, Kraguljac NV, Lahti AC. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders - A systematic review of magnetic resonance spectroscopy studies. Schizophr Res. 2022 Nov;249:74-84.
  • 66. Marques TR, Ashok AH, Angelescu I, Borgan F, Myers J, Lingford-Hughes A, Nutt DJ, Veronese M, Turkheimer FE, Howes OD. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [11C]Ro154513. Mol Psychiatry. 2021 Jun;26(6):2616-2625.
  • 67. Singh, S., Khanna, D., & Kalra, S. Role of neurochemicals in schizophrenia. Current Psychopharmacology, 2020 9(2), 144-161.
  • 68. Petralia, M. C., Ciurleo, R., Saraceno, A., Pennisi, M., Basile, M. S., Fagone, P., ... & Cavalli, E. Meta-analysis of transcriptomic data of dorsolateral prefrontal cortex and of peripheral blood mononuclear cells identifies altered pathways in schizophrenia. Genes, 2020 11(4), 390.
  • 69. Wang, X., Hu, Y., Liu, W., Ma, Y., Chen, X., Xue, T., & Cui, D. Molecular basis of gaba hypofunction in adolescent schizophrenia-like animals. Neural plasticity, 2021, 1-15.
  • 70. Kumar, V., Vajawat, B., & Rao, N. P. (2021). Frontal GABA in schizophrenia: A meta-analysis of 1H-MRS studies. The World Journal of Biological Psychiatry, 22(1), 1-13.
  • 71. Swanton T. The dopamine, glutamate, and GABA hypotheses of schizophrenia: glutamate may be the key. ANU Undergrad Res J. 2019 10(1):88–96
  • 72. Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits. 2021 Dec 8;15:769969.
  • 73. Calvin OL, Redish AD. Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits. PLoS Comput Biol. 2021 May 25;17(5):e1008985.
  • 74. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010 Feb;11(2):100-13.
  • 75. Dienel SJ, Enwright JF 3rd, Hoftman GD, Lewis DA. Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophr Res. 2020 Mar; 217:86-94.
  • 76. Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry. 2022 Sep 15;92(6):501-513.
  • 77. Tsegay, E. W., Demise, D. G., Hailu, N. A., & Gufue, Z. H. Serotonin type 6 and 7 receptors as a novel therapeutic target for the treatment of schizophrenia. Neuropsychiatric Disease and Treatment, 2020 2499-2509.
  • 78. Park MTM, Jeon P, Khan AR, Dempster K, Chakravarty MM, Lerch JP, MacKinley M, Théberge J, Palaniyappan L. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Aug 30; 110:110297.
  • 79. Nakao, K., Singh, M., Sapkota, K., Fitzgerald, A., Hablitz, J. J., & Nakazawa, K. 5-HT2A receptor dysregulation in a schizophrenia relevant mouse model of NMDA receptor hypofunction. Translational Psychiatry, 2022 12(1), 168.
  • 80. Kantrowitz, J. T. Targeting serotonin 5-HT2A receptors to better treat schizophrenia: rationale and current approaches. CNS drugs, 2020 34(9), 947-959.
  • 81. Ibi D. Role of interaction of mGlu2 and 5-HT2A receptors in antipsychotic effects. Pharmacol Biochem Behav. 2022 Nov; 221:173474.
  • 82. Quednow, B. B., Geyer, M. A., & Halberstadt, A. L. Serotonin and schizophrenia. In Handbook of Behavioral Neuroscience 2020 (Vol. 31, pp. 711-743). Elsevier.
  • 83. Ľupták, M., Michaličková, D., Fišar, Z., Kitzlerová, E., & Hroudová, J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World journal of psychiatry, 2021 11(7), 277.
  • 84. Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomedicine. 2020 Aug; 28:102222.
  • 85. Jin, Y., Wang, Q., Wang, Y., Liu, M., Sun, A., Geng, Z., ... & Li, X. Alpha7 nAChR agonists for cognitive deficit and negative symptoms in schizophrenia: a meta-analysis of randomized double-blind controlled trials. Shanghai Archives of Psychiatry, 2017 29(4), 191.
  • 86. Koola, M. M. Alpha7 nicotinic‐N‐methyl‐D‐aspartate hypothesis in the treatment of schizophrenia and beyond. Human Psychopharmacology: Clinical and Experimental, 2021 36(1), 1-16.
  • 87. Acharya, S., & Kim, K. M. Roles of the functional interaction between brain cholinergic and dopaminergic systems in the pathogenesis and treatment of schizophrenia and Parkinson’s disease. International Journal of Molecular Sciences, 2021 22(9), 4299.
  • 88. Scott JG, Matuschka L, Niemelä S, Miettunen J, Emmerson B, Mustonen A. Evidence of a Causal Relationship Between Smoking Tobacco and Schizophrenia Spectrum Disorders. Front Psychiatry. 2018 Nov 20; 9:607.
  • 89. Terry AV Jr, Callahan PM. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future. Neuropharmacology. 2020 Jun 15; 170:108053.
  • 90. Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res. 2021 May 7; 405:113201.
  • 91. Dean B, Scarr E. Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 2020 Jun;288:112989.
  • 92. Brum CB, Paixão-Côrtes VR, Carvalho AM, Martins-Silva T, Carpena MX, Ulguim KF, Luquez KYS, Salatino-Oliveira A, Tovo-Rodrigues L. Genetic variants in miRNAs differentially expressed during brain development and their relevance to psychiatric disorders susceptibility. World J Biol Psychiatry. 2021 Jul;22(6):456-467.
  • 93. Maki Y, Nygard K, Hammond RR, Regnault TRH, Richardson BS. Maternal Undernourishment in Guinea Pigs Leads to Fetal Growth Restriction with Increased Hypoxic Cells and Oxidative Stress in the Brain. Dev Neurosci. 2019;41(5-6):290-299.
  • 94. Gomes FV, Zhu X, Grace AA. The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability. Mol Psychiatry. 2020 Dec;25(12):3278-3291.
  • 95. Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry. 2020 Mar;7(3):272-281.
  • 96. Soares AR, Gildawie KR, Honeycutt JA, Brenhouse HC. Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. Behav Brain Res. 2020 Jun 18; 388:112658.
  • 97. Bentsen H, Landrø NI. Neurocognitive effects of an omega-3 fatty acid and vitamins E+C in schizophrenia: A randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids. 2018 Sep;136:57-66.
  • 98. Arion D, Huo Z, Enwright JF, Corradi JP, Tseng G, Lewis DA. Transcriptome Alterations in Prefrontal Pyramidal Cells Distinguish Schizophrenia From Bipolar and Major Depressive Disorders. Biol Psychiatry. 2017 Oct 15;82(8):594-600.
  • 99. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020 Jan;205:107426.
  • 100. Dixon BJ, Kumar J, Danielmeier C. Frontal neural metabolite changes in schizophrenia and their association with cognitive control: A systematic review. Neurosci Biobehav Rev. 2022 Jan;132:224-247.
  • 101. Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr. 2018 Jun;23(3):187-191.
  • 102. Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci. 2019 Oct 16;39(42):8239-8249.
  • 103. Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev. 2020 Nov;118:298-314.
  • 104. Khlghatyan J, Quintana C, Parent M, Beaulieu JM. High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cereb Cortex. 2019 Aug 14;29(9):3813-3827.
  • 105. Teng L-L, Lu G-L, Chiou L-C, Cheng Y-Y, Hsueh T-E. Serotonin receptor hTR6-mediated mTORC1 signaling regulates dietary restriction–induced memory enhancement. PLoS Biology. 2019 17:e2007097.

Şizofreni Patogenezinde Nörokimyasal, Nöroenflamatuar ve Nörofizyolojik Dinamikler

Year 2025, Volume: 34 Issue: 2, 141 - 155, 30.06.2025
https://doi.org/10.17827/aktd.1614815

Abstract

Şizofreni, pozitif ve negatif semptomlar ile bilişsel bozukluklarla karakterize olmuş poligenetik ve multifaktöriyel bir nörodejeneratif hastalıktır. Kronopatolojisi göz önüne alındığında genellikle ilk psikozun yetişkinlikte ortaya çıkması nedeniyle prodromal dönemde teşhis edilememektedir. Genetik yatkınlık, epigenetik etkiler, enflamasyon, nörotrofik faktörler, oksidatif stres, nörokimyasal ve nörogelişimsel hipotezler ile mevcut biyobelirteçler arasındaki ilişkiselliği holistik perspektiften değerlendirme hedeflenmektedir. Bu çalışmada nörogörüntüleme yöntemleri, kan ve BOS değerleri, hayvan deneyleri, genomik bulgular ve fenotip ile şekillenen epigenetik araştırmalar analiz edilmiştir. Kalıtımsal faktörler, intrauterin gelişim anomalileri, konjenital malformasyonlar, doğum öncesi ve sonrası stresör etkenler ya da enfeksiyona maruziyetin nörogelişimsel süreçleri, beyin plastisitesini etkileyerek hastalığın oluşumunda yer aldığı düşünülmektedir. Sitokin düzensizlikleri ve nörotrofik faktörlerin dengesizlikleri, mitokondriyal disfonksiyon, aşırı sinaptik budamanın oligodendrosit, mikroglia ve astrositlerde disregülasyona neden olabileceği belirtilmektedir. Oksidatif stres faktörleri ve nöroenflamasyonun, nörokimyasal transmisyonu etkilediğine yer verilmektedir. Histolojik bulgulara göre premorbid dönemde meydana gelen anormallikler, beyinde işlevsel ve yapısal değişimler oluşturmaktadır. Hastalığın patofizyolojisine ilişkin nedensel mekanizmaların belirlenmesinde aday belirteçlerin epifenomen olmasının ötesinde patolojik süreci yansıtmasının önemli olduğu ifade edilmektedir. Prodromal, tanısal, tedaviye yönelik belirteçlerin gelişmesi ve hastalığın patofizyolojisinin aydınlatılması için boylamsal çalışmalara ihtiyaç duyulmaktadır. Bu bağlamda, literatürdeki bulguların ve hipotezlerin bütüncül ve ilişkisel bir şekilde değerlendirilmesi amaçlanmaktadır.

References

  • 1. Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet Lond. Engl. 388, 86–97.
  • 2. Summakoğlu, D., & Ertuğrul, B. (2018). Schizophrenia and its treatment. Lectio Scientific Journal of Health and Natural Sciences, 1(2), 43-61.
  • 3. Khavari, B., & Cairns, M. J. (2020). Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers. Cells, 9(8), 1837.
  • 4. Ayano, G. (2016). Schizophrenia: a concise overview of etiology, epidemiology diagnosis and management: review of literatures. J Schizophrenia Res, 3(2), 2-7.
  • 5. Karakuş, G., Kocal, Y., & Sert, D. (2017). Schizophrenia: etiology, clinical features and treatment. Arch. Med. Rev. J, 26(2), 251-67.
  • 6. Fatani, B. Z., Aldawod, R., Alhawaj, A., Alsadah, S., Slais, F. R., Alyaseen, E. N., ... & Qassaim, Y. A. (2017). Schizophrenia: etiology, pathophysiology and management-a review. The Egyptian Journal of Hospital Medicine, 69(6), 2640-2646.
  • 7. McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiologic reviews, 30(1), 67-76.
  • 8. McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry, 19(1), 15-33.
  • 9. Khan, A., & Powell, S. B. (2018). Sensorimotor gating deficits in “two-hit” models of schizophrenia risk factors. Schizophrenia research, 198, 68-83.
  • 10. Ermakov, E. A., Dmitrieva, E. M., Parshukova, D. A., Kazantseva, D. V., Vasilieva, A. R., & Smirnova, L. P. (2021). Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxidative Medicine and Cellular Longevity.
  • 11. Müller, N. (2018). Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophrenia bulletin, 44(5), 973-982.
  • 12. Fišar, Z. (2022). Biological hypotheses, risk factors, and biomarkers of schizophrenia. Progress in NeuroPsychopharmacology and Biological Psychiatry, 110626.
  • 13. Blokhin, I. O., Khorkova, O., Saveanu, R. V., & Wahlestedt, C. (2020). Molecular mechanisms of psychiatric diseases. Neurobiology of disease, 146, 105136.
  • 14. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013 Feb;43(2):239-57.
  • 15. Momtazmanesh, S., Zare-Shahabadi, A., & Rezaei, N. (2019). Cytokine alterations in schizophrenia: an updated review. Frontiers in psychiatry, 10, 892.
  • 16. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Apr 5;42:115-21. doi: 10.1016/j.pnpbp.2011.12.002. Epub 2011 Dec 13. PMID: 22192886.
  • 17. Namlı MN, Karabulut N, Ayyıldız H. Evaluation of S100B Protein in Patients with Schizophrenia with Seropositive and Seronegative Toxoplasma. Med J Bakirkoy. 2021 Dec;17(4):420-424.
  • 18. Erkmen, T., Şahin, C., & Arıcıoğlu, F. Şizofreni’de İnflamatuvar Mekanizmaların Yeri. Clinical and Experimental Health Sciences, 2015; 5(2), 134-139.
  • 19. Chukaew P, Bunmak N, Auampradit N, Siripaiboonkij A, Saengsawang W, Ratta-Apha W. Correlation of BDNF, VEGF, TNF-α, and S100B with cognitive impairments in chronic, medicated schizophrenia patients. Neuropsychopharmacol Rep. 2022 Sep;42(3):281-287.
  • 20. Langeh U, Singh S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol. 2021;19(2):265-277.
  • 21. Hagmeyer S, Cristóvão JS, Mulvihill JJE, Boeckers TM, Gomes CM, Grabrucker AM. Zinc Binding to S100B Affords Regulation of Trace Metal Homeostasis and Excitotoxicity in the Brain. Front Mol Neurosci. 2018 Jan 17; 10:456.
  • 22. Deng H, Kahlon RS, Mohite S, Amin PA, Zunta-Soares G, Colpo GD, Stertz L, Fries GR, Walss-Bass C, Soares JC, Okusaga OO. Elevated Plasma S100B, Psychotic Symptoms, and Cognition in Schizophrenia. Psychiatr Q. 2018 Mar;89(1):53-60.
  • 23. Goldsmith, D. R., & Rapaport, M. H. (2020). Inflammation and negative symptoms of schizophrenia: implications for reward processing and motivational deficits. Frontiers in psychiatry, 11, 46.
  • 24. Fujigaki H, Mouri A, Yamamoto Y, Nabeshima T, Saito K. Linking phencyclidine intoxication to the tryptophan-kynurenine pathway: Therapeutic implications for schizophrenia. Neurochem Int. 2019 May; 125:1-6.
  • 25. Kindler, J., Lim, C. K., Weickert, C. S., Boerrigter, D., Galletly, C., Liu, D., ... & Weickert, T. W. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Molecular psychiatry, 2020; 25(11), 2860-2872.
  • 26. Cao, B., Chen, Y., Ren, Z., Pan, Z., McIntyre, R. S., & Wang, D. Dysregulation of kynurenine pathway and potential dynamic changes of kynurenine in schizophrenia: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 2021; 123, 203-214.
  • 27. Micó JA, Rojas-Corrales MO, Gibert-Rahola J, Parellada M, Moreno D, Fraguas D, Graell M, Gil J, Irazusta J, Castro-Fornieles J, Soutullo C, Arango C, Otero S, Navarro A, Baeza I, Martínez-Cengotitabengoa M, González-Pinto A. Reduced antioxidant defense in early onset first-episode psychosis: a case-control study. BMC Psychiatry. 2011 Feb 14; 11:26.
  • 28. Sedlak TW, Nucifora LG, Koga M, Shaffer LS, Higgs C, Tanaka T, Wang AM, Coughlin JM, Barker PB, Fahey JW, Sawa A. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol Neuropsychiatry. 2018 May;3(4):214-222.
  • 29. Kumar, J., Liddle, E. B., Fernandes, C. C., Palaniyappan, L., Hall, E. L., Robson, S. E., ... & Liddle, P. F. Glutathione and glutamate in schizophrenia: a 7T MRS study. Molecular psychiatry, 2020 25(4), 873-882.
  • 30. Lin, Chieh-Hsin; Lane, Hsien-Yuan. Early identification and intervention of schizophrenia: insight from hypotheses of glutamate dysfunction and oxidative stress. Frontiers in psychiatry, 2019, 10: 93.
  • 31. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, Do KQ. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017 Jul;22(7):936-943.
  • 32. O’Donnell KJ, Meaney MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry. 2017; 174:319–28.
  • 33. Abbas AI, Sundiang MJM, Henoch B, Morton MP, Bolkan SS, Park AJ, Harris AZ, Kellendonk C, Gordon JA. Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding. Neuron. 2018 Nov 21;100(4):926-939.e3.
  • 34. Lestra, V., Romeo, B., Martelli, C., Benyamina, A., & Hamdani, N. (2022). Could CRP be a differential biomarker of illness stages in schizophrenia? A systematic review and meta-analysis. Schizophrenia Research, 246, 175-186.
  • 35. Pawełczyk, T., Grancow-Grabka, M., Trafalska, E., Szemraj, J., Żurner, N., & Pawełczyk, A. (2019). An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacology, 236(9), 2811-2822.
  • 36. Utami N, Effendy E, Amin M. The Relation of Brain-Derived Neurotropic Factor (BDNF) Serum Level to Sub-Domain Cognitive Functions of Indonesian Schizophrenia Patients Measured by MoCA-Ina. Open Access Maced J Med Sci. 2019 Dec 30;7(23):4053-4058.
  • 37. Allimuthu, P., Nandeesha, H., Chinniyappan, R., Bhardwaz, B., & Blessed raj, J. (2021). Relationship of brain-derived neurotrophic factor with Interleukin-23, testosterone and disease severity in schizophrenia. Indian Journal of Clinical Biochemistry, 36, 365-369
  • 38. Nojima, S., Fuchikami, M., Kataoka, T., Araki, M., Omura, J., Miyagi, T., ... & Morinobu, S. (2021). Alterations in DNA methylation rates of brain-derived neurotrophic factor in patients with schizophrenia. The European Journal of Psychiatry, 35(2), 67-74.
  • 39. Bora, E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychological medicine, 2019 49(12), 1971-1979.
  • 40. Shi, X. J., Du, Y., Li, X. S., Yao, C. Q., & Cheng, Y. Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. Journal of Psychiatric Research, 2022 156, 538-546.
  • 41. Cui, X., McGrath, J. J., Burne, T. H., & Eyles, D. W. Vitamin D and schizophrenia: 20 years on. Molecular Psychiatry, 2021 26(7), 2708-2720.
  • 42. Bansal, V., & Chatterjee, I. Association of vitamins and neurotransmitters: understanding the effect on schizophrenia. Neurochemical Journal, 2022 16(1), 39-45
  • 43. Amminger GP, Nelson B, Markulev C, Yuen HP, Schäfer MR, Berger M, Mossaheb N, Schlögelhofer M, Smesny S, Hickie IB, Berger GE, Chen EYH, de Haan L, Nieman DH, Nordentoft M, Riecher-Rössler A, Verma S, Thompson A, Yung AR, McGorry PD. The NEURAPRO Biomarker Analysis: Long-Chain Omega-3 Fatty Acids Improve 6-Month and 12-Month Outcomes in Youths at Ultra-High Risk for Psychosis. Biol Psychiatry. 2020 Feb 1;87(3):243-252.
  • 44. Ben-Shachar D. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. J Neural Transm (Vienna). 2020 Feb;127(2):159-168.
  • 45. Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2022 Apr;27(4):1886-1897.
  • 46. Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience. 2014 Dec 12; 282:248-57.
  • 47. McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends in neurosciences, 2019 42(3), 205-220.
  • 48. Cassidy CM, Balsam PD, Weinstein JJ, Rosengard RJ, Slifstein M, Daw ND, Abi-Dargham A, Horga G. A Perceptual Inference Mechanism for Hallucinations Linked to Striatal Dopamine. Curr Biol. 2018 Feb 19;28(4):503-514.e4.
  • 49. Purves-Tyson TD, Brown AM, Weissleder C, Rothmond DA, Shannon Weickert C. Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Mol Brain. 2021 Jun 26;14(1):96.
  • 50. Reynolds GP. The neurochemical pathology of schizophrenia: post-mortem studies from dopamine to parvalbumin. J Neural Transm (Vienna). 2022 Jun;129(5-6):643-647.
  • 51. Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry. 2021 Jun;178(6):509-521.
  • 52. Arya, A., G. Sindhwani, and Kadian R. Neurotransmitter and brain parts involved in shcizophrenia. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 6, June 2018, pp. 4-11
  • 53. Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Nics L, Pfaff S, Philippe C, Berroterán-Infante N, Pichler V, Meyer BM, Rabl U, Sezen P, Cumming P, Stimpfl T, Sitte HH, Lanzenberger R, Mossaheb N, Zimprich A, Rusjan P, Dorffner G, Mitterhauser M, Hacker M, Pezawas L, Kasper S, Wadsak W, Praschak-Rieder N, Willeit M. On the relationship of first-episode psychosis to the amphetamine-sensitized state: a dopamine D2/3 receptor agonist radioligand study. Transl Psychiatry. 2020 Jan 8;10(1):2.
  • 54. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016 Aug;17(8):524-32.
  • 55. Grace AA. Dopamine System Dysregulation and the Pathophysiology of Schizophrenia: Insights From the Methylazoxymethanol Acetate Model. Biol Psychiatry. 2017 Jan 1;81(1):5-8.
  • 56. Modinos G, Şimşek F, Azis M, Bossong M, Bonoldi I, Samson C, Quinn B, Perez J, Broome MR, Zelaya F, Lythgoe DJ, Howes OD, Stone JM, Grace AA, Allen P, McGuire P. Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis. Neuropsychopharmacology. 2018 Dec;43(13):2652-2659.
  • 57. Escamilla CO, Filonova I, Walker AK, Xuan ZX, Holehonnur R, Espinosa F, Liu S, Thyme SB, López-García IA, Mendoza DB, Usui N, Ellegood J, Eisch AJ, Konopka G, Lerch JP, Schier AF, Speed HE, Powell CM. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017 Nov 9;551(7679):227-231.
  • 58. Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci. 2009 Feb 25;29(8):2344-54.
  • 59. de Bartolomeis A, Ciccarelli M, Vellucci L, Fornaro M, Iasevoli F, Barone A. Update on novel antipsychotics and pharmacological strategies for treatment-resistant schizophrenia. Expert Opin Pharmacother. 2022 Dec;23(18):2035-2052.
  • 60. Parellada E, Gassó P. Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry. 2021 May 6;11(1):271.
  • 61. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015 Feb;29(2):97-115.
  • 62. Robison AJ, Thakkar KN, Diwadkar VA. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol Psychiatry. 2020 Feb 1;87(3):204-214.
  • 63. Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci. 2015 Aug;38(8):506-16.
  • 64. Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res. 2015 Sep;167(1-3):98-107.
  • 65. Reddy-Thootkur M, Kraguljac NV, Lahti AC. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders - A systematic review of magnetic resonance spectroscopy studies. Schizophr Res. 2022 Nov;249:74-84.
  • 66. Marques TR, Ashok AH, Angelescu I, Borgan F, Myers J, Lingford-Hughes A, Nutt DJ, Veronese M, Turkheimer FE, Howes OD. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [11C]Ro154513. Mol Psychiatry. 2021 Jun;26(6):2616-2625.
  • 67. Singh, S., Khanna, D., & Kalra, S. Role of neurochemicals in schizophrenia. Current Psychopharmacology, 2020 9(2), 144-161.
  • 68. Petralia, M. C., Ciurleo, R., Saraceno, A., Pennisi, M., Basile, M. S., Fagone, P., ... & Cavalli, E. Meta-analysis of transcriptomic data of dorsolateral prefrontal cortex and of peripheral blood mononuclear cells identifies altered pathways in schizophrenia. Genes, 2020 11(4), 390.
  • 69. Wang, X., Hu, Y., Liu, W., Ma, Y., Chen, X., Xue, T., & Cui, D. Molecular basis of gaba hypofunction in adolescent schizophrenia-like animals. Neural plasticity, 2021, 1-15.
  • 70. Kumar, V., Vajawat, B., & Rao, N. P. (2021). Frontal GABA in schizophrenia: A meta-analysis of 1H-MRS studies. The World Journal of Biological Psychiatry, 22(1), 1-13.
  • 71. Swanton T. The dopamine, glutamate, and GABA hypotheses of schizophrenia: glutamate may be the key. ANU Undergrad Res J. 2019 10(1):88–96
  • 72. Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits. 2021 Dec 8;15:769969.
  • 73. Calvin OL, Redish AD. Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits. PLoS Comput Biol. 2021 May 25;17(5):e1008985.
  • 74. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010 Feb;11(2):100-13.
  • 75. Dienel SJ, Enwright JF 3rd, Hoftman GD, Lewis DA. Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophr Res. 2020 Mar; 217:86-94.
  • 76. Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry. 2022 Sep 15;92(6):501-513.
  • 77. Tsegay, E. W., Demise, D. G., Hailu, N. A., & Gufue, Z. H. Serotonin type 6 and 7 receptors as a novel therapeutic target for the treatment of schizophrenia. Neuropsychiatric Disease and Treatment, 2020 2499-2509.
  • 78. Park MTM, Jeon P, Khan AR, Dempster K, Chakravarty MM, Lerch JP, MacKinley M, Théberge J, Palaniyappan L. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Aug 30; 110:110297.
  • 79. Nakao, K., Singh, M., Sapkota, K., Fitzgerald, A., Hablitz, J. J., & Nakazawa, K. 5-HT2A receptor dysregulation in a schizophrenia relevant mouse model of NMDA receptor hypofunction. Translational Psychiatry, 2022 12(1), 168.
  • 80. Kantrowitz, J. T. Targeting serotonin 5-HT2A receptors to better treat schizophrenia: rationale and current approaches. CNS drugs, 2020 34(9), 947-959.
  • 81. Ibi D. Role of interaction of mGlu2 and 5-HT2A receptors in antipsychotic effects. Pharmacol Biochem Behav. 2022 Nov; 221:173474.
  • 82. Quednow, B. B., Geyer, M. A., & Halberstadt, A. L. Serotonin and schizophrenia. In Handbook of Behavioral Neuroscience 2020 (Vol. 31, pp. 711-743). Elsevier.
  • 83. Ľupták, M., Michaličková, D., Fišar, Z., Kitzlerová, E., & Hroudová, J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World journal of psychiatry, 2021 11(7), 277.
  • 84. Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomedicine. 2020 Aug; 28:102222.
  • 85. Jin, Y., Wang, Q., Wang, Y., Liu, M., Sun, A., Geng, Z., ... & Li, X. Alpha7 nAChR agonists for cognitive deficit and negative symptoms in schizophrenia: a meta-analysis of randomized double-blind controlled trials. Shanghai Archives of Psychiatry, 2017 29(4), 191.
  • 86. Koola, M. M. Alpha7 nicotinic‐N‐methyl‐D‐aspartate hypothesis in the treatment of schizophrenia and beyond. Human Psychopharmacology: Clinical and Experimental, 2021 36(1), 1-16.
  • 87. Acharya, S., & Kim, K. M. Roles of the functional interaction between brain cholinergic and dopaminergic systems in the pathogenesis and treatment of schizophrenia and Parkinson’s disease. International Journal of Molecular Sciences, 2021 22(9), 4299.
  • 88. Scott JG, Matuschka L, Niemelä S, Miettunen J, Emmerson B, Mustonen A. Evidence of a Causal Relationship Between Smoking Tobacco and Schizophrenia Spectrum Disorders. Front Psychiatry. 2018 Nov 20; 9:607.
  • 89. Terry AV Jr, Callahan PM. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future. Neuropharmacology. 2020 Jun 15; 170:108053.
  • 90. Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res. 2021 May 7; 405:113201.
  • 91. Dean B, Scarr E. Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 2020 Jun;288:112989.
  • 92. Brum CB, Paixão-Côrtes VR, Carvalho AM, Martins-Silva T, Carpena MX, Ulguim KF, Luquez KYS, Salatino-Oliveira A, Tovo-Rodrigues L. Genetic variants in miRNAs differentially expressed during brain development and their relevance to psychiatric disorders susceptibility. World J Biol Psychiatry. 2021 Jul;22(6):456-467.
  • 93. Maki Y, Nygard K, Hammond RR, Regnault TRH, Richardson BS. Maternal Undernourishment in Guinea Pigs Leads to Fetal Growth Restriction with Increased Hypoxic Cells and Oxidative Stress in the Brain. Dev Neurosci. 2019;41(5-6):290-299.
  • 94. Gomes FV, Zhu X, Grace AA. The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability. Mol Psychiatry. 2020 Dec;25(12):3278-3291.
  • 95. Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry. 2020 Mar;7(3):272-281.
  • 96. Soares AR, Gildawie KR, Honeycutt JA, Brenhouse HC. Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. Behav Brain Res. 2020 Jun 18; 388:112658.
  • 97. Bentsen H, Landrø NI. Neurocognitive effects of an omega-3 fatty acid and vitamins E+C in schizophrenia: A randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids. 2018 Sep;136:57-66.
  • 98. Arion D, Huo Z, Enwright JF, Corradi JP, Tseng G, Lewis DA. Transcriptome Alterations in Prefrontal Pyramidal Cells Distinguish Schizophrenia From Bipolar and Major Depressive Disorders. Biol Psychiatry. 2017 Oct 15;82(8):594-600.
  • 99. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020 Jan;205:107426.
  • 100. Dixon BJ, Kumar J, Danielmeier C. Frontal neural metabolite changes in schizophrenia and their association with cognitive control: A systematic review. Neurosci Biobehav Rev. 2022 Jan;132:224-247.
  • 101. Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr. 2018 Jun;23(3):187-191.
  • 102. Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci. 2019 Oct 16;39(42):8239-8249.
  • 103. Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev. 2020 Nov;118:298-314.
  • 104. Khlghatyan J, Quintana C, Parent M, Beaulieu JM. High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cereb Cortex. 2019 Aug 14;29(9):3813-3827.
  • 105. Teng L-L, Lu G-L, Chiou L-C, Cheng Y-Y, Hsueh T-E. Serotonin receptor hTR6-mediated mTORC1 signaling regulates dietary restriction–induced memory enhancement. PLoS Biology. 2019 17:e2007097.
There are 105 citations in total.

Details

Primary Language Turkish
Subjects Neurosciences (Other)
Journal Section Review
Authors

Cansu Sevinçli Bayram 0000-0003-1408-4332

Turker Erguzel 0000-0001-8438-6542

Publication Date June 30, 2025
Submission Date January 7, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 34 Issue: 2

Cite

AMA Sevinçli Bayram C, Erguzel T. Şizofreni Patogenezinde Nörokimyasal, Nöroenflamatuar ve Nörofizyolojik Dinamikler. Arşiv Kaynak Tarama Dergisi. June 2025;34(2):141-155. doi:10.17827/aktd.1614815