Research Article
BibTex RIS Cite

ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ

Year 2025, Volume: 3 Issue: 1, 76 - 85, 01.06.2025

Abstract

Safran (Crocus sativus L.), geleneksel tıpta önemli bir yer tutan ve rosetin, pikrokrosin ve safranal gibi farmakolojik bileşenlere sahip bir bitkidir. Bu bileşikler, antidepresan, antikanser, bağışıklık sistemi ve solunum sistemi gibi farklı tedavi alanlarında terapötik etkilere sahiptir. Bu çalışmanın amacı, safran ekstresi ile toplam fenolik, flavonoid ve antioksidan kapasiteyi incelemektir. Ayrıca, safran bitkisinden yeşil sentez yöntemi ile gümüş nanopartiküller (AgNP'ler) sentezlenmiştir. Safran ekstraktının antioksidan kapasitesi DPPH ve CUPRAC yöntemleri ile belirlenmiştir. Sitotoksik etki ise in vitro koşullarda Alamar blue yöntemiyle ölçülmüştür. Yeşil sentezle elde edilen AgNP'ler, UV-vis spektrofotometri ve dinamik ışık saçılma (DLS) teknikleriyle karakterize edilmiştir. Sentezlenen AgNP'lerin UV-vis spektrofotometresinde 410 nm'de absorbsiyon verdiği ve DLS ile 54 nm boyutunda olduğu tespit edilmiştir. Safran ekstresinin toplam fenolik içeriği 153.16 ± 0.03 mg GAE/g ekstre ve flavonoid içeriği ise 1059.218 ± 0.003 mg QE/g ekstre olarak belirlenmiştir. DPPH için safranın IC50 değeri 10.60 ± 0.2 µg/mL, CUPRAC için ise A0.50 değeri 0.313 ± 0.4 µg/mL olarak hesaplanmıştır. Safran ekstresi ve sentezlenen AgNP'ler, PC-3 prostat kanseri hücrelerinde belirgin bir sitotoksik etki göstermiştir. PC-3 hücrelerinde AgNP'lerin IC50 değeri 25.34 ± 1.2 µg/mL olarak ölçülmüştür. Sonuç olarak, safrandan elde edilen gümüş nanopartiküller ve safran ekstresi, antioksidan aktivite göstermekte olup, safran sağlık ve endüstriyel amaçlar için doğal bir potansiyel antioksidan kaynağı ve kanser tedavisinde kullanılabilir bir bileşen olarak değerlendirilebilir.

Supporting Institution

TUBITAK

Project Number

TUBITAK 2209A

Thanks

Bu proje TUBİTAK 2209A kapsamında desteklenmiştir.

References

  • [1] José Bagur, M., et al., Saffron: An old medicinal plant and a potential novel functional food. Molecules, 2017. 23(1): p. 30.
  • [2] Bukhari, S.I., M. Manzoor, and M. Dhar, A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomedicine & Pharmacotherapy, 2018. 98: p. 733-745.
  • [3] Ma, A., et al., The effects and underlying mechanisms of medicine and food homologous flowers on the prevention and treatment of related diseases. Journal of Food Biochemistry, 2022. 46(12): p. e14430.
  • [4] Christodoulou, E., et al., Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 2015. 67(12): p. 1634-1649.
  • [5] Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 2019. 12(7): p. 908-931.
  • [6] Beck, F., M. Loessl, and A.J. Baeumner, Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: Considering their potential for the point-of-care. Microchimica Acta, 2023. 190(3): p. 91.
  • [7] Luo, Z., et al., Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries. Journal of Materials Science & Technology, 2021. 73: p. 171-177.
  • [8] Sun, Y.-A., et al., Silver nanoparticles-decorating manganese oxide hybrid nanostructures for supercapacitor applications. Langmuir, 2019. 35(44): p. 14203-14212.
  • [9] Kapil, N., S.V. Mayani, and K.G. Bhattacharyya, Environmental implications of nanoceramic applications. Results in Chemistry, 2023. 5: p. 100724.
  • [10] Prasher, P., et al., Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid and Interface Science Communications, 2020. 35: p. 100244.
  • [11] Skóra, B., et al., Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Scientific Reports, 2021. 11(1): p. 13451.
  • [12] Sharifi-Rad, M. and P. Pohl, Synthesis of biogenic silver nanoparticles (Agcl-NPs) using a pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials, 2020. 10(4): p. 638.
  • [13] Narciso, A.M., et al., Antimicrobial green silver nanoparticles in bone grafts functionalization for biomedical applications. Biocatalysis and agricultural biotechnology, 2021. 35: p. 102074.
  • [14] Damle, A., et al., A concise review on implications of silver nanoparticles in bone tissue engineering. Biomaterials Advances, 2022. 141: p. 213099.
  • [15] Asafa, T., et al., Physico-mechanical properties of emulsion paint embedded with silver nanoparticles. Bulletin of Materials Science, 2021. 44: p. 1-11.
  • [16] Kim, K.S., C.G. Song, and P.M. Kang, Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases. Antioxidants & redox signaling, 2019. 30(5): p. 733-746.
  • [17] Huang, C.-L., et al., Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental research, 2015. 136: p. 253-263.
  • [18] Kumari, R., et al., Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. JBIC Journal of Biological Inorganic Chemistry, 2020. 25: p. 23-37.
  • [19] Raj, A., et al., Exploring the cytotoxicity on human lung cancer cells and DNA binding stratagem of camptothecin functionalised silver nanoparticles through multi-spectroscopic, and calorimetric approach. Scientific Reports, 2023. 13(1): p. 9045.
  • [20] Hussein, H.A. and M.A. Abdullah, Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Applied Nanoscience, 2022. 12(11): p. 3071-3096.
  • [21] Burdușel, A.-C., et al., Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials, 2018. 8(9): p. 681.
  • [22] Marinescu, L., et al., Comparative antimicrobial activity of silver nanoparticles obtained by wet chemical reduction and solvothermal methods. International Journal of Molecular Sciences, 2022. 23(11): p. 5982.
  • [23] Quintero-Quiroz, C., et al., Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomaterials research, 2019. 23(1): p. 27.
  • [24] He, C., et al., Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation. Ultrasonics sonochemistry, 2014. 21(2): p. 542-548.
  • [25] Scuderi, M., et al., Nanoscale study of the tarnishing process in electron beam lithography-fabricated silver nanoparticles for plasmonic applications. The Journal of Physical Chemistry C, 2016. 120(42): p. 24314-24323.
  • [26] Roy, N., et al., Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environmental toxicology and pharmacology, 2013. 36(3): p. 807-812.
  • [27] Shameem Ahamed, S., R. Chola, and R. Venkatachalam, Green Synthesis of Nanoparticles Using Plant and Biological Organisms and Their Biomedical Applications, in Modern Nanotechnology: Volume 2: Green Synthesis, Sustainable Energy and Impacts. 2023, Springer. p. 91-121.
  • [28] Abbasi, R., et al., Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 2023. 25(3): p. 43.
  • [29] Simon, S., et al., Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines, 2022. 10(11): p. 2792.
  • [30] Raj, R., et al., Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. Environmental Research, 2023. 231: p. 116045.
  • [31] Shaikh, W.A., et al., A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): The wonder particle of the past decade. Applied Nanoscience, 2021. 11(11): p. 2625-2660.
  • [32] Adeyemi, J.O., et al., Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules, 2022. 12(5): p. 627.
  • [33] Xu, L., et al., Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020. 10(20): p. 8996.
  • [34] Hosseingholian, A., et al., Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 2023. 24: p. 100500.
  • [35] Sharma, N.K., et al., Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS omega, 2022. 7(31): p. 27004-27020.
  • [36] Javed, R., et al., Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 2020. 18: p. 1-15.
  • [37] Ferlay, J., et al., Global cancer observatory: cancer today. Lyon: International agency for research on cancer, 2020. 20182020.
  • [38] Slinkard, K. and V.L. Singleton, Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 1977. 28(1): p. 49-55.
  • [39] Djeridane, A., et al., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 2006. 97(4): p. 654-660.
  • [40] Whelan, A.M., et al., Enhanced third-order optical nonlinearity of silver nanoparticles with a tunable surface plasmon resonance. Journal of Nanoscience and nanotechnology, 2004. 4(1-2): p. 66-68.
  • [41] Krklješ, A., Radiolytic synthesis of nanocomposites based on noble metal nanoparticles and natural polymer, and their application as biomaterial. 2011.
  • [42] Varkey, A. and A. Fort, Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Solar Energy Materials and Solar Cells, 1993. 29(3): p. 253-259.
  • [43] Clayton, K.N., et al., Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 2016. 10(5).
  • [44] Karimi, E., et al., Evaluation of Crocus sativus L. Stigma Phenolic and Flavonoid Compounds and Its Antioxidant Activity. Molecules, 2010. 15(9): p. 6244-6256.
  • [45] Sharma, O.P. and T.K. Bhat, DPPH antioxidant assay revisited. Food Chemistry, 2009. 113(4): p. 1202-1205.
  • [46] Li, X., et al., “Plant Golden” C. sativus: Qualitative and quantitative analysis of major components in stigmas and petals and their biological activity in vitro. Journal of Pharmaceutical and Biomedical Analysis, 2024. 243: p. 116115.

GREEN SYNTHESIS OF SILVER NANOPARTICLES (AGNPS) USING ANATOLIAN SAFFRON (CROCUS SATIVUS L.) AQUEOUS EXTRACT AND THEIR ANTIOXIDANT ACTIVITY AND CYTOTOXIC EFFECTS ON HUMAN PROSTATE CANCER CELLS

Year 2025, Volume: 3 Issue: 1, 76 - 85, 01.06.2025

Abstract

Saffron (Crocus sativus L.) is a valuable plant in traditional medicine, known for its pharmacological properties due to its components, such as rosetin, picrocrocin, and safranal. These components have therapeutic effects in various fields, including antidepressant, anticancer, immune, and respiratory systems. This study aimed to investigate the total phenolic, flavonoid, and antioxidant capacity of saffron extract. Additionally, silver nanoparticles (AgNPs) were synthesized using green synthesis from the saffron plant. The antioxidant capacity of saffron extract was determined using the DPPH and CUPRAC methods. The cytotoxic effect was evaluated under in vitro conditions using the Alamar blue assay. The AgNPs synthesized by green synthesis were characterized by UV-vis spectrophotometry and dynamic light scattering (DLS). It was confirmed that the synthesized AgNPs exhibited absorbance at 410 nm in the UV-vis spectrophotometer and had a size of 54 nm by DLS. The total phenolic content of saffron extract was 153.16 ± 0.03 mg GAE/g extract, and the flavonoid content was 1059.218 ± 0.003 mg QE/g extract. The IC50 value of saffron for DPPH was determined as 10.60 ± 0.2 µg/mL, while the A0.50 value for CUPRAC was 0.313 ± 0.4 µg/mL. The saffron extract and synthesized AgNPs exhibited significant cytotoxic effects on PC-3 prostate cancer cells. The IC50 value of AgNPs on PC-3 cells was measured as 25.34 ± 1.2 µg/mL. In summary, the silver nanoparticles derived from saffron and its extract exhibited antioxidant activity and have potential as a natural antioxidant source for health and industrial purposes, as well as a promising component in cancer therapy.

Project Number

TUBITAK 2209A

References

  • [1] José Bagur, M., et al., Saffron: An old medicinal plant and a potential novel functional food. Molecules, 2017. 23(1): p. 30.
  • [2] Bukhari, S.I., M. Manzoor, and M. Dhar, A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomedicine & Pharmacotherapy, 2018. 98: p. 733-745.
  • [3] Ma, A., et al., The effects and underlying mechanisms of medicine and food homologous flowers on the prevention and treatment of related diseases. Journal of Food Biochemistry, 2022. 46(12): p. e14430.
  • [4] Christodoulou, E., et al., Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 2015. 67(12): p. 1634-1649.
  • [5] Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 2019. 12(7): p. 908-931.
  • [6] Beck, F., M. Loessl, and A.J. Baeumner, Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: Considering their potential for the point-of-care. Microchimica Acta, 2023. 190(3): p. 91.
  • [7] Luo, Z., et al., Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries. Journal of Materials Science & Technology, 2021. 73: p. 171-177.
  • [8] Sun, Y.-A., et al., Silver nanoparticles-decorating manganese oxide hybrid nanostructures for supercapacitor applications. Langmuir, 2019. 35(44): p. 14203-14212.
  • [9] Kapil, N., S.V. Mayani, and K.G. Bhattacharyya, Environmental implications of nanoceramic applications. Results in Chemistry, 2023. 5: p. 100724.
  • [10] Prasher, P., et al., Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid and Interface Science Communications, 2020. 35: p. 100244.
  • [11] Skóra, B., et al., Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Scientific Reports, 2021. 11(1): p. 13451.
  • [12] Sharifi-Rad, M. and P. Pohl, Synthesis of biogenic silver nanoparticles (Agcl-NPs) using a pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials, 2020. 10(4): p. 638.
  • [13] Narciso, A.M., et al., Antimicrobial green silver nanoparticles in bone grafts functionalization for biomedical applications. Biocatalysis and agricultural biotechnology, 2021. 35: p. 102074.
  • [14] Damle, A., et al., A concise review on implications of silver nanoparticles in bone tissue engineering. Biomaterials Advances, 2022. 141: p. 213099.
  • [15] Asafa, T., et al., Physico-mechanical properties of emulsion paint embedded with silver nanoparticles. Bulletin of Materials Science, 2021. 44: p. 1-11.
  • [16] Kim, K.S., C.G. Song, and P.M. Kang, Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases. Antioxidants & redox signaling, 2019. 30(5): p. 733-746.
  • [17] Huang, C.-L., et al., Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental research, 2015. 136: p. 253-263.
  • [18] Kumari, R., et al., Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. JBIC Journal of Biological Inorganic Chemistry, 2020. 25: p. 23-37.
  • [19] Raj, A., et al., Exploring the cytotoxicity on human lung cancer cells and DNA binding stratagem of camptothecin functionalised silver nanoparticles through multi-spectroscopic, and calorimetric approach. Scientific Reports, 2023. 13(1): p. 9045.
  • [20] Hussein, H.A. and M.A. Abdullah, Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Applied Nanoscience, 2022. 12(11): p. 3071-3096.
  • [21] Burdușel, A.-C., et al., Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials, 2018. 8(9): p. 681.
  • [22] Marinescu, L., et al., Comparative antimicrobial activity of silver nanoparticles obtained by wet chemical reduction and solvothermal methods. International Journal of Molecular Sciences, 2022. 23(11): p. 5982.
  • [23] Quintero-Quiroz, C., et al., Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomaterials research, 2019. 23(1): p. 27.
  • [24] He, C., et al., Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation. Ultrasonics sonochemistry, 2014. 21(2): p. 542-548.
  • [25] Scuderi, M., et al., Nanoscale study of the tarnishing process in electron beam lithography-fabricated silver nanoparticles for plasmonic applications. The Journal of Physical Chemistry C, 2016. 120(42): p. 24314-24323.
  • [26] Roy, N., et al., Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environmental toxicology and pharmacology, 2013. 36(3): p. 807-812.
  • [27] Shameem Ahamed, S., R. Chola, and R. Venkatachalam, Green Synthesis of Nanoparticles Using Plant and Biological Organisms and Their Biomedical Applications, in Modern Nanotechnology: Volume 2: Green Synthesis, Sustainable Energy and Impacts. 2023, Springer. p. 91-121.
  • [28] Abbasi, R., et al., Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 2023. 25(3): p. 43.
  • [29] Simon, S., et al., Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines, 2022. 10(11): p. 2792.
  • [30] Raj, R., et al., Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. Environmental Research, 2023. 231: p. 116045.
  • [31] Shaikh, W.A., et al., A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): The wonder particle of the past decade. Applied Nanoscience, 2021. 11(11): p. 2625-2660.
  • [32] Adeyemi, J.O., et al., Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules, 2022. 12(5): p. 627.
  • [33] Xu, L., et al., Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020. 10(20): p. 8996.
  • [34] Hosseingholian, A., et al., Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 2023. 24: p. 100500.
  • [35] Sharma, N.K., et al., Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS omega, 2022. 7(31): p. 27004-27020.
  • [36] Javed, R., et al., Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 2020. 18: p. 1-15.
  • [37] Ferlay, J., et al., Global cancer observatory: cancer today. Lyon: International agency for research on cancer, 2020. 20182020.
  • [38] Slinkard, K. and V.L. Singleton, Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 1977. 28(1): p. 49-55.
  • [39] Djeridane, A., et al., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 2006. 97(4): p. 654-660.
  • [40] Whelan, A.M., et al., Enhanced third-order optical nonlinearity of silver nanoparticles with a tunable surface plasmon resonance. Journal of Nanoscience and nanotechnology, 2004. 4(1-2): p. 66-68.
  • [41] Krklješ, A., Radiolytic synthesis of nanocomposites based on noble metal nanoparticles and natural polymer, and their application as biomaterial. 2011.
  • [42] Varkey, A. and A. Fort, Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Solar Energy Materials and Solar Cells, 1993. 29(3): p. 253-259.
  • [43] Clayton, K.N., et al., Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 2016. 10(5).
  • [44] Karimi, E., et al., Evaluation of Crocus sativus L. Stigma Phenolic and Flavonoid Compounds and Its Antioxidant Activity. Molecules, 2010. 15(9): p. 6244-6256.
  • [45] Sharma, O.P. and T.K. Bhat, DPPH antioxidant assay revisited. Food Chemistry, 2009. 113(4): p. 1202-1205.
  • [46] Li, X., et al., “Plant Golden” C. sativus: Qualitative and quantitative analysis of major components in stigmas and petals and their biological activity in vitro. Journal of Pharmaceutical and Biomedical Analysis, 2024. 243: p. 116115.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Biomedical Therapy
Journal Section Research Articles
Authors

Tolga Özkan 0009-0006-9363-5911

Sueda Nur Ellialtioğlu 0009-0002-9086-2116

Kemal Baş 0000-0003-0881-9793

Serdar Karakurt 0000-0002-4449-6103

Project Number TUBITAK 2209A
Early Pub Date April 16, 2025
Publication Date June 1, 2025
Submission Date February 14, 2025
Acceptance Date April 4, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

APA Özkan, T., Ellialtioğlu, S. N., Baş, K., Karakurt, S. (2025). ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ. Akdeniz Mühendislik Dergisi, 3(1), 76-85.
AMA Özkan T, Ellialtioğlu SN, Baş K, Karakurt S. ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ. AKUJE. June 2025;3(1):76-85.
Chicago Özkan, Tolga, Sueda Nur Ellialtioğlu, Kemal Baş, and Serdar Karakurt. “ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ”. Akdeniz Mühendislik Dergisi 3, no. 1 (June 2025): 76-85.
EndNote Özkan T, Ellialtioğlu SN, Baş K, Karakurt S (June 1, 2025) ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ. Akdeniz Mühendislik Dergisi 3 1 76–85.
IEEE T. Özkan, S. N. Ellialtioğlu, K. Baş, and S. Karakurt, “ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ”, AKUJE, vol. 3, no. 1, pp. 76–85, 2025.
ISNAD Özkan, Tolga et al. “ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ”. Akdeniz Mühendislik Dergisi 3/1 (June 2025), 76-85.
JAMA Özkan T, Ellialtioğlu SN, Baş K, Karakurt S. ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ. AKUJE. 2025;3:76–85.
MLA Özkan, Tolga et al. “ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ”. Akdeniz Mühendislik Dergisi, vol. 3, no. 1, 2025, pp. 76-85.
Vancouver Özkan T, Ellialtioğlu SN, Baş K, Karakurt S. ANADOLU SAFRANI (CROCUS SATIVUS L.) SULU EKSTRAKTI İLE GÜMÜŞ NANOPARTİKÜLLERİN (AGNP) YEŞİL SENTEZİ, ANTİOKSİDAN AKTİVİTELERİ VE İNSAN PROSTAT KANSERİ HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİLERİ. AKUJE. 2025;3(1):76-85.