Research Article
BibTex RIS Cite

The Thickness of Insulation to be Applied on The External Walls of Buildings Depends on Embodied Energy and Thermal Atalet Index

Year 2023, , 50 - 62, 15.06.2023
https://doi.org/10.53448/akuumubd.1272710

Abstract

In the study, the insulation thickness was calculated depending on the different embodied energy (production energy) of the insulation material and the wall thermal resistance. In recent years, embedded or production energies, which cover all the energies used in buildings, from raw materials to building and insulation materials, have begun to be considered in building energy consumption reviews. The thermal atalet index, together with the insulation thickness of the building envelope, is one of the essential parameters to be considered in building energy-saving analysis. In the study, thermal atalet index values were determined depending on the thickness of the insulation material for different periods. Natural gas and coal are assumed to be used in the heating system, and Polyurethane was taken as insulation material. The highest insulation thickness was calculated as 0.064 m for 250 heating days, 2.0 m2.K/W thermal resistance and 30 MJ/kg embodied energy. The lowest insulation thickness was 0.006 m for 100 heating days with 2.0 m2.K/W thermal resistance 150 MJ/kg embodied energy.

References

  • Acharya T., Riehl B. and Fuchs A. 2021. Effects of Albedo and Thermal Inertia on Pavement Surface Temperatures with Convective Boundary Conditions—A CFD Study. Processes, 9, 11, 2078.
  • Amiri A., Emami N., Ottelin J., Sorvari J., Marteinsson B., Heinonen J. and Junnila S., 2021. Embodied emissions of buildings- A forgotten factor in green building certificates, Energy and Buildings, 241, 110962.
  • Anh L. D. H. and Pásztory Z., 2021. An overview of factors influencing thermal conductivity of building insulation materials, Journal of Building Engineering, 44, 102604.
  • Asdrubali, F., Grazieschi, G., Roncone, M., Thiebat, F. and Carbonaro, C. 2023. Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry. Energies, 16, 1846.
  • Aste N., Angelotti A. and Buzzetti M., 2009. The influence of the external walls thermal inertia on the energy performance of well insulated buildings, Energy and Buildings, 41, 11, 1181-1187.
  • Aste N., Leonforte F., Manfren M. and Mazzon M., 2015. Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study, Applied Energy, 145, 111-123.
  • Axaopoulos I., Axaopoulos P., Gelegenis J. and Fylladitakis E.D. 2019. Optimum external wall insulation thickness considering the annual CO2 emissions. Journal of Building Physics, 42, 4, 527-544.
  • Axaopoulos I., Axaopoulos P. and Gelegenis J., 2014. Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind, Applied Energy, 117, 167-175. Aytaç A. ve Aksoy U. T., 2006. Enerji Tasarrufu için Dış Duvarlarda Optimum Yalıtım Kalınlığı ve Isıtma Maliyeti İlişkisi, Gazi Üniv. Müh. Mim. Fak. Der., 21, 4, 753-758.
  • Bellahcene L., Cheknane A., Bekkouche S.M.A. and Sahel D., 2017. The effect of the thermal inertia on the thermal transfer in building wall, E3S Web Conf., 22, 00013.
  • Chen Z., Hammad A. W. A. and Akbarnezhad I. K. A., 2020. Optimising Embodied Energy and Thermal Performance of Thermal Insulation in Building Envelopes via an Automated Building Information Modelling (BIM) Tool, Buildings, 10, 218.
  • Gagliano A., Patania F., Nocera F. and Signorello C., 2014. Assessment of the dynamic thermal performance of massive buildings, Energy and Buildings, 72, 361-370.
  • Grazieschi G., Asdrubali F. and Thomas G., 2021. Embodied energy and carbon of building insulating materials: A critical review, Cleaner Environmental Systems, 2, 100032.
  • Huberman N. and Pearlmutter D., 2008. A life-cycle energy analysis of building materials in the Negev desert, Energy and Buildings, 40, 837–848.
  • Koezjakova A., Urge-Vorsatz D., Crijns-Graus W. and van den Broek M., 2018. The relationship between operational energy demand and embodied energy in Dutch residential buildings, Energy and Buildings, 165, 233-245.
  • Kon O. and Caner İ., 2023. Calculation of Insulation Thickness Depending on The Coolest and Hottest Climate Conditions for Different Flat Roof Types of Buildings, Black Sea Journal of Engineering and Science, 6, 1, 1-9.
  • Kon O. and Yüksel B., 2019. Energy consumption based on insulation thickness of exterior walls in public buildings, Proceedings of the Institution of Civil Engineers-Energy 172, 4, 135-147.
  • Kon O. and Yüksel B., 2016. Optimum Insulation Thickness Calculated by Measuring of Roof, Floor And Exterior Walls in Buildings Used for Different Purposes, Isı Bilimi ve Tekniği Dergisi, 36, 1, 17-27.
  • Liu H., Maghoul P. and Shalaby A., 2019. Optimum insulation design for buried utilities subject to frost action in cold regions using the Nelder-Mead algorithm, International Journal of Heat and Mass Transfer, 130, 613-639.
  • Malka L., Kuriqi A. and Haxhimusa A., 2022. Optimum insulation thickness design of exterior walls and overhauling cost to enhance the energy efficiency of Albanian's buildings stock, Journal of Cleaner Production, 381, 1, 135160.
  • Nearing G. S., Moran M. S., Scott R. L. and Ponce-Campos G., 2012. Coupling diffusion and maximum entropy models to estimate thermal inertia, Remote Sensing of Environment, 119, 222-231.
  • Reddy B.V. V. and Jagadish K.S., 2003. Embodied energy of common and alternative building materials and technologies, Energy and Buildings, 35, 2, 129-137.
  • Roh, S.; Tae, S. and Kim, R. 2018. Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials. Sustainability, 10, 1693.
  • Stéphan E., Cantin R., Caucheteux A., Tasca-Guernouti S. and Michel P., 2014. Experimental assessment of thermal inertia in insulated and non-insulated old limestone buildings, Building and Environment, 80, 241-248.
  • Soret G.M., Vacca P., Tignard J., Hidalgo J.P., Maluk C., Aitchison M. and Torero J. L., 2021. Thermal inertia as an integrative parameter for building performance, Journal of Building Engineering, 33, 101623.
  • Xiao, M. and Zhang, G. Q., 2013. The Influence of Thermal Inertia Index on the Residential External Walls in Hot-Summer and Cold-Winter Areas. In Applied Mechanics and Materials, 368–370, 562–565.
  • Yang, J. and Tang, J., 2017. Influence of envelope insulation materials on building energy consumption. Front Energy, 11, 575–581.
  • Zhang C., Hu M., Laclau B., Garnesson T., Yang X. and Tukker A., 2021. Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden, Renewable and Sustainable Energy Reviews, 145, 111077.

Binaların Dış Duvarlarında Uygulanacak Yalıtımın Gömülü Enerjisine Bağlı Kalınlığı ve Isıl Atalet İndeksi

Year 2023, , 50 - 62, 15.06.2023
https://doi.org/10.53448/akuumubd.1272710

Abstract

Çalışmada, yalıtım malzemesinin farklı gömülü enerjisine (üretim enerjisine) bağlı farklı yalıtımsız duvar ısıl direncine bağlı yalıtım kalınlığı hesaplanmıştır. Son yıllarda binalarda kullanılan, yapı ve yalıtım malzemelerinin başlangıçtan, ham madde halinden ve kullanımına kadar olan tüm enerjileri kapsayan, gömülü veya üretim enerjileri bina enerji tüketim incelemelerinde önemli ölçüde dikkate alınmaya başlanmıştır. Isıl atalet indeksi yapı kabuğu yalıtım kalınlığının ile birlikte bina enerji tasarrufu analizlerinde dikkate alınması gerekli önemli parametrelerdendir. Çalışmada ek olarak, yalıtım malzemesinin kalınlığına ve farklı zaman dilimleri için ısıl atalet indeksi değerleri tespit edilmiştir. Isıtma sisteminde doğal gaz ve kömür kullanıldığı kabul edilmiştir. Yalıtım malzemesi olarak poliüretan alınmıştır. En yüksek yalıtım kalınlığı, 250 ısıtma günde 2.0 m2.K/W ısıl dirençte 30 MJ/kg gömülü enerjide, 0.064 m olarak hesaplanmıştır. En düşük yalıtım kalınlığı ise 100 ısıtma günde 2.0 m2.K/W ısıl dirençte 150 MJ/kg gömülü enerjide, 0.006 m olarak bulunmuştur.

References

  • Acharya T., Riehl B. and Fuchs A. 2021. Effects of Albedo and Thermal Inertia on Pavement Surface Temperatures with Convective Boundary Conditions—A CFD Study. Processes, 9, 11, 2078.
  • Amiri A., Emami N., Ottelin J., Sorvari J., Marteinsson B., Heinonen J. and Junnila S., 2021. Embodied emissions of buildings- A forgotten factor in green building certificates, Energy and Buildings, 241, 110962.
  • Anh L. D. H. and Pásztory Z., 2021. An overview of factors influencing thermal conductivity of building insulation materials, Journal of Building Engineering, 44, 102604.
  • Asdrubali, F., Grazieschi, G., Roncone, M., Thiebat, F. and Carbonaro, C. 2023. Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry. Energies, 16, 1846.
  • Aste N., Angelotti A. and Buzzetti M., 2009. The influence of the external walls thermal inertia on the energy performance of well insulated buildings, Energy and Buildings, 41, 11, 1181-1187.
  • Aste N., Leonforte F., Manfren M. and Mazzon M., 2015. Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study, Applied Energy, 145, 111-123.
  • Axaopoulos I., Axaopoulos P., Gelegenis J. and Fylladitakis E.D. 2019. Optimum external wall insulation thickness considering the annual CO2 emissions. Journal of Building Physics, 42, 4, 527-544.
  • Axaopoulos I., Axaopoulos P. and Gelegenis J., 2014. Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind, Applied Energy, 117, 167-175. Aytaç A. ve Aksoy U. T., 2006. Enerji Tasarrufu için Dış Duvarlarda Optimum Yalıtım Kalınlığı ve Isıtma Maliyeti İlişkisi, Gazi Üniv. Müh. Mim. Fak. Der., 21, 4, 753-758.
  • Bellahcene L., Cheknane A., Bekkouche S.M.A. and Sahel D., 2017. The effect of the thermal inertia on the thermal transfer in building wall, E3S Web Conf., 22, 00013.
  • Chen Z., Hammad A. W. A. and Akbarnezhad I. K. A., 2020. Optimising Embodied Energy and Thermal Performance of Thermal Insulation in Building Envelopes via an Automated Building Information Modelling (BIM) Tool, Buildings, 10, 218.
  • Gagliano A., Patania F., Nocera F. and Signorello C., 2014. Assessment of the dynamic thermal performance of massive buildings, Energy and Buildings, 72, 361-370.
  • Grazieschi G., Asdrubali F. and Thomas G., 2021. Embodied energy and carbon of building insulating materials: A critical review, Cleaner Environmental Systems, 2, 100032.
  • Huberman N. and Pearlmutter D., 2008. A life-cycle energy analysis of building materials in the Negev desert, Energy and Buildings, 40, 837–848.
  • Koezjakova A., Urge-Vorsatz D., Crijns-Graus W. and van den Broek M., 2018. The relationship between operational energy demand and embodied energy in Dutch residential buildings, Energy and Buildings, 165, 233-245.
  • Kon O. and Caner İ., 2023. Calculation of Insulation Thickness Depending on The Coolest and Hottest Climate Conditions for Different Flat Roof Types of Buildings, Black Sea Journal of Engineering and Science, 6, 1, 1-9.
  • Kon O. and Yüksel B., 2019. Energy consumption based on insulation thickness of exterior walls in public buildings, Proceedings of the Institution of Civil Engineers-Energy 172, 4, 135-147.
  • Kon O. and Yüksel B., 2016. Optimum Insulation Thickness Calculated by Measuring of Roof, Floor And Exterior Walls in Buildings Used for Different Purposes, Isı Bilimi ve Tekniği Dergisi, 36, 1, 17-27.
  • Liu H., Maghoul P. and Shalaby A., 2019. Optimum insulation design for buried utilities subject to frost action in cold regions using the Nelder-Mead algorithm, International Journal of Heat and Mass Transfer, 130, 613-639.
  • Malka L., Kuriqi A. and Haxhimusa A., 2022. Optimum insulation thickness design of exterior walls and overhauling cost to enhance the energy efficiency of Albanian's buildings stock, Journal of Cleaner Production, 381, 1, 135160.
  • Nearing G. S., Moran M. S., Scott R. L. and Ponce-Campos G., 2012. Coupling diffusion and maximum entropy models to estimate thermal inertia, Remote Sensing of Environment, 119, 222-231.
  • Reddy B.V. V. and Jagadish K.S., 2003. Embodied energy of common and alternative building materials and technologies, Energy and Buildings, 35, 2, 129-137.
  • Roh, S.; Tae, S. and Kim, R. 2018. Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials. Sustainability, 10, 1693.
  • Stéphan E., Cantin R., Caucheteux A., Tasca-Guernouti S. and Michel P., 2014. Experimental assessment of thermal inertia in insulated and non-insulated old limestone buildings, Building and Environment, 80, 241-248.
  • Soret G.M., Vacca P., Tignard J., Hidalgo J.P., Maluk C., Aitchison M. and Torero J. L., 2021. Thermal inertia as an integrative parameter for building performance, Journal of Building Engineering, 33, 101623.
  • Xiao, M. and Zhang, G. Q., 2013. The Influence of Thermal Inertia Index on the Residential External Walls in Hot-Summer and Cold-Winter Areas. In Applied Mechanics and Materials, 368–370, 562–565.
  • Yang, J. and Tang, J., 2017. Influence of envelope insulation materials on building energy consumption. Front Energy, 11, 575–581.
  • Zhang C., Hu M., Laclau B., Garnesson T., Yang X. and Tukker A., 2021. Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden, Renewable and Sustainable Energy Reviews, 145, 111077.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Okan Kon 0000-0002-5166-0258

Early Pub Date June 6, 2023
Publication Date June 15, 2023
Submission Date March 28, 2023
Published in Issue Year 2023

Cite

APA Kon, O. (2023). Binaların Dış Duvarlarında Uygulanacak Yalıtımın Gömülü Enerjisine Bağlı Kalınlığı ve Isıl Atalet İndeksi. International Journal of Engineering Technology and Applied Science, 6(1), 50-62. https://doi.org/10.53448/akuumubd.1272710