Research Article
BibTex RIS Cite

Investigation of Thermal Behaviors of Different Piston Materials in a Compression Ignition Engine Using the Finite Element Method

Year 2024, , 9 - 22, 15.06.2024
https://doi.org/10.53448/akuumubd.1431294

Abstract

High pressure and temperature gases formed as a result of combustion cause structural and thermal loads. Thermal load also causes thermal stresses in the piston. In this study, the temperature distribution of 3 different piston materials for the Renault F8Q706 engine was calculated with the finite element method (FEM) at 2500 min-1 and full load. These materials are aluminum-alloy-6061, structural-steel and magnesium-alloy-AZ91D. In the analyses, piston surfaces be examined. In the calculations, in-cylinder boundary conditions were taken from the 1-dimensional engine model created with Ricardo-Wave software for this engine and from the literature. The 3-D drawing of the piston was made in SolidWorks software and FEM analyses were made in ANSYS Steady State Thermal module. At the end of the analyses, the surface temperatures of the piston and the heat transfer of the piston surface and adjacent gases were calculated. As a result, while the average in-cylinder combustion end gas temperature calculated in the 1-dimensional engine model is 1238.8 K, it is calculated as 1310.4 K in structural steel and 1372.9 K in magnesium alloy-AZ91D. These temperatures are similar for each material used. Temperatures were calculated at the highest values on the upper surface and immediately lower surface of the piston, and at the lowest values in the piston skirt region. It has been observed that the aluminum alloy-6061 material increases the thermal dissipation in the piston.

Ethical Statement

This article does not contain any human or animal studies. It was prepared entirely original by the authors.

References

  • Ashby, M., 2021. Material property data for engineering materials. Ansys Education Resources. Abdel-Rahman, A., A., 1998. On the emissions from internal combustion engines: A Review. International Journal of Energy Research, 22, 483-513.
  • Abuşoğlu, A., and Kanoğlu, M., 2009. Emission characteristics analysis of diesel engine powered cogeneration. Journal of Thermal Science and Technology, 29, 45-53.
  • Aktaş, F., 2022. Numerical investigation of equivalence ratio effects on a converted diesel engine using natural gas. Journal of Energy Resources Technology, 236, 1949-1963.
  • Baker, D. M., Assanis, D. N., 1994. A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Applied Mathematical Modeling, 18(11), 590-601. https://doi.org/10.1016/0307-904X(94)90317-4
  • Buyukkaya, E., 2008. Thermal analysis of functionally graded coating AlSi alloy and steel pistons. Surface and Coatings Technology, 202(16), 3856-3865. https://doi.org/10.1016/j.surfcoat.2008.01.034
  • Cheng, W. K., Hamrin, D., Heywood, J. B., Hochgreb, S., Min, K. and Norris, M., 1993. An overview of hydrocarbon emissions mechanisms in spark-ignition engines. SAE Int. J. Engines, https://doi.org/10.4271/932708 Engine Catalog: https://mymotorlist.com/engines/renault/ (12.12.2023)
  • Esfahanian, V., Javaheri, A. and Ghaffarpour, M., 2006. Thermal analysis of an SI engine piston using different combustion boundary condition treatments. Applied Thermal Engineering, 26(2-3), 277-287. https://doi.org/10.1016/j.applthermaleng.2005.05.002
  • Fenimore, C. P., 1971. Formation of nitric oxide in premixed hydrocarbon flames. Symposium (International) on Combustion, 13(1), 373-380.
  • Ghojel, J. I., 2010. Review of the development and applications of the wiebe function: a tribute to the contribution of Ivan Wiebe to engine research. International Journal of Engine Research, 11(4), 297-312. https://doi.org/10.1243/14680874JER06510
  • Gustov, P., 2009. The Influence of the engine load on value and temperature distribution in the piston of the turbocharged diesel engine. Journal of Achievements in Materials and Manufacturing Engineering, 35(2), 146- 153.
  • Hamzehei, M. and Rashidi, M., 2006. Determination of piston and cylinder head temperature distribution in a 4-cylinder gasoline engine at actual process. Proceedings Conf. on Heat Transfer Engineering and Environment, Greece, August 2006, pp. 153-158.
  • Hao, L., Ren, Y., Lu, W., Jiang, N., Ge, Y., Wang, Y., 2023. Assessment of heavy-duty diesel vehicle NOx and CO2 emissions based on OBD data. Atmosphere, 14, 1417.
  • Heywood, J. B., 1988. Internal Combustion Engine Fundamentals, McGraw-Hill.
  • Kajiwara, H., Fujioka, Y., Suzuki, T. and Negishi, H., 2011. An analytical approach for prediction of piston temperature distribution in diesel engines. JSAE Review, 23(4), 429-434. https://doi.org/10.1016/S0389-4304(02)00234-5
  • Kumar, M., 2017. Computer aided analysis of piston with thermal barrier coating on crown. International Journal For Technological Research In Engineering, 4(10), 2127-2131.
  • Lapuerta, L., Armas, O., Ballesteros, R. and Carmona, M., 2000. Fuel formulation effects on passenger car diesel engine particulate emissions and composition. SAE Int. J. Engines, 11. https://doi.org/10.4271/2000-01-1850 Mahle GmbH, 2012. Pistons And Engine Testing (1st ed), Vieweg – Teubner.
  • Morel, T., and Keribar, R., 1990. Detailed analysis of heat flow pattern in a piston. International symposium COMODIA, USA.
  • Newhall, H. K., 1969. Kinetics of engine-generated nitrogen oxides and carbon monoxide. Symposium (International) on Combustion, 12(1), 603-613. https://doi.org/10.1016/S0082-0784(69)80441-8
  • Paratwar, A. V. and Hulwan, D. B., 2013. Surface Temperature Prediction and Thermal Analysis of Cylinder Head in Diesel Engine. International Journal of Engineering Research and Applications, 3(4), 892-902.
  • Pipitone, E., 2009. A new simple friction model for s. i. engine. SAE Technical Paper, https://doi.org/10.4271/2009-01-1984
  • Satge´ de Caro, P., Mouloungui, Z., Vaitilingom, G. and Berge, J. C., 2001. Interest of combining an additive with diesel–ethanol blends for use in diesel engines. Fuel, 80(4), 565-574. https://doi.org/10.1016/S0016-2361(00)00117-4
  • Shudo, T. and Suzuki, H, 2002. Applicability of heat transfer equations to hydrogen combustion. JSAE review, 23(3), 303-308. https://doi.org/10.1016/S0389-4304(02)00193-5
  • Singh, P. and Parmanik D. A., 2015. Structural and Thermal Analysis of Different Piston Materials with Cooling (Due to Combustion Pressure) Using Finite Element Analysis. International Journal of Automotive Engineering and Technologies, 4(2), 110-117. https://doi.org/10.18245/ijaet.60575
  • Uzuneanu, K., Panait, T. and Dragan, M., 2008. Modeling the heat transfer in the piston head of a spark ignition engine supplied with ethanol-gasoline blend. COFRET 08.
  • Wannatong, K., Chanchaona, S. and Sanitjai, S., 2008. Simulation algorithm for piston ring dynamics. Simulation Modelling Practice And Theory, 16, (1), 127-146. https://doi.org/10.1016/j.simpat.2007.11.004
  • Wiebe, I., 1956. Semi-empirical expression for combustion rate in engines. In Proceedings of Conference on Piston Engines.
  • Winkler, M. F. and Parker, D. W., 1993. Ceramic thermal barrier coatings provide advanced diesel emissions control and improved management of combustion – exhaust system temperatures. SAE Paper, 11. https://doi.org/10.4271/931106
  • Winterbone, D. E. and Turan, A., 2015. Advanced Thermodynamics For Engineers (2nd ed). Butterworth-Heinemann An Imprint of Elsevier.
  • Woschni, G., 1967. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Int. J. Engines. https://doi.org/10.4271/670931
  • Zhang, H., Lin, Z. and Xing, J., 2013. Temperature field analysis to gasoline engine piston and structure optimization. Journal of Theoretical and Applied Information Technology, 48(2), 904-910.

Sıkıştırma ile Ateşlemeli Bir Motorda Farklı Piston Malzemelerinin Sonlu Elemanlar Metodu ile Termal Davranışlarının İncelenmesi

Year 2024, , 9 - 22, 15.06.2024
https://doi.org/10.53448/akuumubd.1431294

Abstract

Silindir içinde yanma sonu oluşan yüksek basınç ve sıcaklıktaki gazlar yapısal ve termal yüklere neden olmaktadır. Termal yüke maruz kalan piston, çalışma sırasında sıcaklık değişimleri nedeniyle termal gerilmelere de maruz kalmaktadır. Bu çalışmada, Renault F8Q706 motoru için seçilen 3 farklı piston malzemesi için sıcaklık dağılımı, 2500 dk-1 motor hızında ve tam yük koşullarında sonlu elemanlar metodu (SEM) hesaplanmıştır. Bu piston malzemeleri alüminyum alaşım-6061, yapısal çelik ve magnezyum alaşım-AZ91D’ dır. Analizlerde, yanma sonu yüksek basınç ve sıcaklığa maruz kalan piston yüzeyleri incelenmiştir. Hesaplamalarda silindir içi sınır şartları, bu motor için 1-Boyutlu (1B) olarak Ricardo-Wave yazılımı ile oluşturulan motor modelinden ve literatürden alınmıştır. Pistonun 3-Boyutlu (3B) çizimi SolidWorks yazılımında ve SEM analizleri ANSYS Steady State Thermal modülünde yapılmıştır. Analizler sonunda, pistonun yüzey sıcaklıkları ile piston yüzeyi ve komşuluğundaki gazların ısı transfer performansları hesaplanmıştır. Analizlerde, 1B motor modelinde hesaplanan silindir içi yanma sonu ortalama gaz sıcaklığı 1238,8 K iken, yapısal çelikte 1310,4 K ve magnezyum alaşım-AZ91D’ de ise 1372,9 K olarak hesaplanmıştır. Bu sıcaklıklar, kullanılan her malzeme için benzer sıcaklık dağılımı göstererek, yanmaya direkt maruz kalan piston üst yüzeyi ve hemen alt yüzeyinde en yüksek değerlerde, piston etek bölgesinde ise en az değerlerde hesaplanmıştır. Piston malzemesi olarak kullanılan alüminyum alaşım-6061 malzemesinin pistondaki ısıl yayılımı arttırdığı görülmüştür.

Ethical Statement

Bu makale herhangi bir insan veya hayvan çalışması içermemektedir. Tamamen orijinal olarak yazarlar tarafından hazırlanmıştır.

References

  • Ashby, M., 2021. Material property data for engineering materials. Ansys Education Resources. Abdel-Rahman, A., A., 1998. On the emissions from internal combustion engines: A Review. International Journal of Energy Research, 22, 483-513.
  • Abuşoğlu, A., and Kanoğlu, M., 2009. Emission characteristics analysis of diesel engine powered cogeneration. Journal of Thermal Science and Technology, 29, 45-53.
  • Aktaş, F., 2022. Numerical investigation of equivalence ratio effects on a converted diesel engine using natural gas. Journal of Energy Resources Technology, 236, 1949-1963.
  • Baker, D. M., Assanis, D. N., 1994. A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Applied Mathematical Modeling, 18(11), 590-601. https://doi.org/10.1016/0307-904X(94)90317-4
  • Buyukkaya, E., 2008. Thermal analysis of functionally graded coating AlSi alloy and steel pistons. Surface and Coatings Technology, 202(16), 3856-3865. https://doi.org/10.1016/j.surfcoat.2008.01.034
  • Cheng, W. K., Hamrin, D., Heywood, J. B., Hochgreb, S., Min, K. and Norris, M., 1993. An overview of hydrocarbon emissions mechanisms in spark-ignition engines. SAE Int. J. Engines, https://doi.org/10.4271/932708 Engine Catalog: https://mymotorlist.com/engines/renault/ (12.12.2023)
  • Esfahanian, V., Javaheri, A. and Ghaffarpour, M., 2006. Thermal analysis of an SI engine piston using different combustion boundary condition treatments. Applied Thermal Engineering, 26(2-3), 277-287. https://doi.org/10.1016/j.applthermaleng.2005.05.002
  • Fenimore, C. P., 1971. Formation of nitric oxide in premixed hydrocarbon flames. Symposium (International) on Combustion, 13(1), 373-380.
  • Ghojel, J. I., 2010. Review of the development and applications of the wiebe function: a tribute to the contribution of Ivan Wiebe to engine research. International Journal of Engine Research, 11(4), 297-312. https://doi.org/10.1243/14680874JER06510
  • Gustov, P., 2009. The Influence of the engine load on value and temperature distribution in the piston of the turbocharged diesel engine. Journal of Achievements in Materials and Manufacturing Engineering, 35(2), 146- 153.
  • Hamzehei, M. and Rashidi, M., 2006. Determination of piston and cylinder head temperature distribution in a 4-cylinder gasoline engine at actual process. Proceedings Conf. on Heat Transfer Engineering and Environment, Greece, August 2006, pp. 153-158.
  • Hao, L., Ren, Y., Lu, W., Jiang, N., Ge, Y., Wang, Y., 2023. Assessment of heavy-duty diesel vehicle NOx and CO2 emissions based on OBD data. Atmosphere, 14, 1417.
  • Heywood, J. B., 1988. Internal Combustion Engine Fundamentals, McGraw-Hill.
  • Kajiwara, H., Fujioka, Y., Suzuki, T. and Negishi, H., 2011. An analytical approach for prediction of piston temperature distribution in diesel engines. JSAE Review, 23(4), 429-434. https://doi.org/10.1016/S0389-4304(02)00234-5
  • Kumar, M., 2017. Computer aided analysis of piston with thermal barrier coating on crown. International Journal For Technological Research In Engineering, 4(10), 2127-2131.
  • Lapuerta, L., Armas, O., Ballesteros, R. and Carmona, M., 2000. Fuel formulation effects on passenger car diesel engine particulate emissions and composition. SAE Int. J. Engines, 11. https://doi.org/10.4271/2000-01-1850 Mahle GmbH, 2012. Pistons And Engine Testing (1st ed), Vieweg – Teubner.
  • Morel, T., and Keribar, R., 1990. Detailed analysis of heat flow pattern in a piston. International symposium COMODIA, USA.
  • Newhall, H. K., 1969. Kinetics of engine-generated nitrogen oxides and carbon monoxide. Symposium (International) on Combustion, 12(1), 603-613. https://doi.org/10.1016/S0082-0784(69)80441-8
  • Paratwar, A. V. and Hulwan, D. B., 2013. Surface Temperature Prediction and Thermal Analysis of Cylinder Head in Diesel Engine. International Journal of Engineering Research and Applications, 3(4), 892-902.
  • Pipitone, E., 2009. A new simple friction model for s. i. engine. SAE Technical Paper, https://doi.org/10.4271/2009-01-1984
  • Satge´ de Caro, P., Mouloungui, Z., Vaitilingom, G. and Berge, J. C., 2001. Interest of combining an additive with diesel–ethanol blends for use in diesel engines. Fuel, 80(4), 565-574. https://doi.org/10.1016/S0016-2361(00)00117-4
  • Shudo, T. and Suzuki, H, 2002. Applicability of heat transfer equations to hydrogen combustion. JSAE review, 23(3), 303-308. https://doi.org/10.1016/S0389-4304(02)00193-5
  • Singh, P. and Parmanik D. A., 2015. Structural and Thermal Analysis of Different Piston Materials with Cooling (Due to Combustion Pressure) Using Finite Element Analysis. International Journal of Automotive Engineering and Technologies, 4(2), 110-117. https://doi.org/10.18245/ijaet.60575
  • Uzuneanu, K., Panait, T. and Dragan, M., 2008. Modeling the heat transfer in the piston head of a spark ignition engine supplied with ethanol-gasoline blend. COFRET 08.
  • Wannatong, K., Chanchaona, S. and Sanitjai, S., 2008. Simulation algorithm for piston ring dynamics. Simulation Modelling Practice And Theory, 16, (1), 127-146. https://doi.org/10.1016/j.simpat.2007.11.004
  • Wiebe, I., 1956. Semi-empirical expression for combustion rate in engines. In Proceedings of Conference on Piston Engines.
  • Winkler, M. F. and Parker, D. W., 1993. Ceramic thermal barrier coatings provide advanced diesel emissions control and improved management of combustion – exhaust system temperatures. SAE Paper, 11. https://doi.org/10.4271/931106
  • Winterbone, D. E. and Turan, A., 2015. Advanced Thermodynamics For Engineers (2nd ed). Butterworth-Heinemann An Imprint of Elsevier.
  • Woschni, G., 1967. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Int. J. Engines. https://doi.org/10.4271/670931
  • Zhang, H., Lin, Z. and Xing, J., 2013. Temperature field analysis to gasoline engine piston and structure optimization. Journal of Theoretical and Applied Information Technology, 48(2), 904-910.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Mehmet Kutay Bayram 0009-0000-9744-2363

Emrah Kantaroğlu 0000-0002-6127-4318

Early Pub Date May 29, 2024
Publication Date June 15, 2024
Submission Date February 3, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024

Cite

APA Bayram, M. K., & Kantaroğlu, E. (2024). Sıkıştırma ile Ateşlemeli Bir Motorda Farklı Piston Malzemelerinin Sonlu Elemanlar Metodu ile Termal Davranışlarının İncelenmesi. International Journal of Engineering Technology and Applied Science, 7(1), 9-22. https://doi.org/10.53448/akuumubd.1431294