Research Article
BibTex RIS Cite

Analysis and Design of Hemispherical Head Pressure Vessel

Year 2019, Volume: 2 Issue: 1, 35 - 45, 16.06.2019

Abstract

In this study, a hemispherical head with pad reinforced central nozzle opening that subjected to uniform internal pressure was investigated using Finite Element Methods (FEM) to understand the design procedure. This procedure is handled according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2. This standard contains two parts for the design of pressure vessels, the first part is Design by rules and the second part is Design by analysis. With reference to the ASME standard, axisymmetric finite element models for Elastic, Limit Load and Elastic-Plastic Analysis are used to demonstrate protection against plastic collapse and local failure. Maximum allowable pressures are obtained in accordance with the mentioned design methods and discussed. According to the elastic and limit load analysis methods, obtained plastic collapse results are very close. Besides, the elastic analysis method is observed to be more conservative than the Elastic-Plastic method regarding the evaluation of plastic collapse. On the other hand, for the local failure results, Elastic-Plastic Analysis is observed to be slightly conservative than the Elastic Analysis. 

References

  • 1. Bhagyashri, U., Mishra, H. (2015). A review on design and analysis of pressure vessel. International Journal of Advance Research and Innovative Ideas in Education 1 (2) 348-353.
  • 2. Dhalla, A.K., Jones, G.L. (1986). ASME code classification of pipe stresses: A simplified elastic procedure. International Journal of Pressure Vessels and Piping 26 (2) 145-166.
  • 3. Sunil Kumar, D., Suhas, B. (2016). Design and Evaluation of Pressure Vessel as per ASME Section VIII Division 2. International Journal of Innovative Research in Science, Engineering and Technology 5 (10) 17989-18002.
  • 4. Thakkar, B.S., Thakkar, S.A. (2012). Design of Pressure Vessel Using ASME Code, Section VIII, Division 1. International Journal of Advanced Engineering Research and Studies 1 (2) 228-234.
  • 5. Agrawal, A.K., Ganesh Narayanan, R. (2018). Pull-out tests on tube to sheet joints fabricated by end forming. Journal of Constructional Steel Research 144 186-197.
  • 6. Olszewski, A., Wodtke, M., Wójcikowski, A. (2018). FEM Analysis and Experimental Tests of Rigid Riser Hanging System. Polish Maritime Research 25 (2) 108-115.
  • 7. Sharifi, S., Gohari, S., Sharifiteshnizi, M., Alebrahim, R., Burvill, C., Yahya, Y., et al., (2018). Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure. Archives of Civil and Mechanical Engineering 18 (4) 1715-1728.
  • 8. Sharifi, S., Gohari, S., Sharifiteshnizi, M., Vrcelj, Z. (2016). Numerical and experimental study on mechanical strength of internally pressurized laminated woven composite shells incorporated with surface-bounded sensors. Composites Part B: Engineering 94 224-237.
  • 9. (2017) ASME Boiler and Pressure Vessel Code Section VIII: Rules for Construction of Pressure Vessels Division 2: Alternative Rules, ASME Boiler and Pressure Vessel Committee on Pressure Vessels.
  • 10. (2017) ASME Boiler and Pressure Vessel Code Section II: Materials Part A: Ferrous Material Specifications, ASME Boiler and Pressure Vessel Committee on Materials.
  • 11. (2017) ASME Boiler and Pressure Vessel Code Section II: Materials Part D: Properties (Metric), ASME Boiler and Pressure Vessel Committee on Materials.
  • 12. Hechmer, J.L., Hollinger, G.L. (1998). 3D Stress Criteria Guidelines for Application, Welding Research Council Bulletin, No: 429, ISSN 0043-2326.
  • 13 Peters, D.T., Haley, K., Padmala, A. (2013). ASME Section VIII Division 3 Example Problem Manual, p. 352-356 ISBN 978-0-7918-6881-2

Küresel Bombeli Basınçlı Kap Analiz ve Tasarımı

Year 2019, Volume: 2 Issue: 1, 35 - 45, 16.06.2019

Abstract

Bu çalışmada küresel bombe merkezinde ve kaynaklı plaka ile takviyelenmiş bir nozul açıklığı iç basınç yüklemesi altında sonlu elemanlar yöntemiyle tasarım prosedürünü anlamak amacıyla incelenmiştir.
Bu prosedür ASME Boiler and Pressure Vessel Code Section VIII Division 2 standardına göre ele alınmıştır. Bu standart ilki “Formüller ile Tasarım” ve ikincisi “Analiz ile Tasarım” olmak üzere basınçlı kap tasarımı için iki farklı kısım içerir. ASME standardı referans alınarak, “Plastik Çökme” ve “Lokal Hasar” hasar modlarına karşı dayanımı doğrulamak için aksisimetrik sonlu eleman modelleri ile elastik, limit yük ve elastik-plastik analiz yöntemleri kullanılmıştır. Maksimum izin verilen basınçlar bu analiz yöntemlerine göre elde edilmiş ve değerlendirilmiştir. Elastik ve limit yük analiz metodlarına göre elde edilen plastik çökme sonuçları birbirine çok yakındır. Bunun yanında plastik çökme hasar modu için elastik analiz yönteminin elastik-plastik analiz yöntemine göre daha konservatif sonuçlar verdiği
gözlemlenmiştir. Diğer yandan, lokal hasar modu için elastik-plastik analiz yönteminin elastik analize göre nispeten konservatif olduğu gözlemlenmiştir. 

References

  • 1. Bhagyashri, U., Mishra, H. (2015). A review on design and analysis of pressure vessel. International Journal of Advance Research and Innovative Ideas in Education 1 (2) 348-353.
  • 2. Dhalla, A.K., Jones, G.L. (1986). ASME code classification of pipe stresses: A simplified elastic procedure. International Journal of Pressure Vessels and Piping 26 (2) 145-166.
  • 3. Sunil Kumar, D., Suhas, B. (2016). Design and Evaluation of Pressure Vessel as per ASME Section VIII Division 2. International Journal of Innovative Research in Science, Engineering and Technology 5 (10) 17989-18002.
  • 4. Thakkar, B.S., Thakkar, S.A. (2012). Design of Pressure Vessel Using ASME Code, Section VIII, Division 1. International Journal of Advanced Engineering Research and Studies 1 (2) 228-234.
  • 5. Agrawal, A.K., Ganesh Narayanan, R. (2018). Pull-out tests on tube to sheet joints fabricated by end forming. Journal of Constructional Steel Research 144 186-197.
  • 6. Olszewski, A., Wodtke, M., Wójcikowski, A. (2018). FEM Analysis and Experimental Tests of Rigid Riser Hanging System. Polish Maritime Research 25 (2) 108-115.
  • 7. Sharifi, S., Gohari, S., Sharifiteshnizi, M., Alebrahim, R., Burvill, C., Yahya, Y., et al., (2018). Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure. Archives of Civil and Mechanical Engineering 18 (4) 1715-1728.
  • 8. Sharifi, S., Gohari, S., Sharifiteshnizi, M., Vrcelj, Z. (2016). Numerical and experimental study on mechanical strength of internally pressurized laminated woven composite shells incorporated with surface-bounded sensors. Composites Part B: Engineering 94 224-237.
  • 9. (2017) ASME Boiler and Pressure Vessel Code Section VIII: Rules for Construction of Pressure Vessels Division 2: Alternative Rules, ASME Boiler and Pressure Vessel Committee on Pressure Vessels.
  • 10. (2017) ASME Boiler and Pressure Vessel Code Section II: Materials Part A: Ferrous Material Specifications, ASME Boiler and Pressure Vessel Committee on Materials.
  • 11. (2017) ASME Boiler and Pressure Vessel Code Section II: Materials Part D: Properties (Metric), ASME Boiler and Pressure Vessel Committee on Materials.
  • 12. Hechmer, J.L., Hollinger, G.L. (1998). 3D Stress Criteria Guidelines for Application, Welding Research Council Bulletin, No: 429, ISSN 0043-2326.
  • 13 Peters, D.T., Haley, K., Padmala, A. (2013). ASME Section VIII Division 3 Example Problem Manual, p. 352-356 ISBN 978-0-7918-6881-2
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Huseyin Ozkan This is me 0000-0002-4463-6591

Safa Ozhan This is me 0000-0002-0986-3684

Garip Genc 0000-0001-7711-3845

Publication Date June 16, 2019
Submission Date April 29, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Ozkan, H. H., Ozhan, S., & Genc, G. (2019). Analysis and Design of Hemispherical Head Pressure Vessel. International Journal of Engineering Technology and Applied Science, 2(1), 35-45.